
A Language forQuantifyingQuantum Network Behavior

ANITA BUCKLEY, Università della Svizzera italiana, Switzerland

PAVEL CHUPRIKOV, Télécom Paris, Institut Polytechnique de Paris, France

RODRIGO OTONI, Università della Svizzera italiana, Switzerland

ROBERT SOULÉ, Yale University, USA

ROBERT RAND, University of Chicago, USA

PATRICK EUGSTER, Università della Svizzera italiana, Switzerland

Quantum networks have capabilities that are impossible to achieve using only classical information. They

connect quantum capable nodes, with their fundamental unit of communication being the Bell pair, a pair
of entangled quantum bits. Due to the nature of quantum phenomena, Bell pairs are fragile and difficult

to transmit over long distances, thus requiring a network of repeaters along with dedicated hardware and

software to ensure the desired results. The intrinsic challenges associated with quantum networks, such as

competition over shared resources and high probabilities of failure, require quantitative reasoning about

quantum network protocols. This paper develops PBKAT, an expressive language for specification, verification

and optimization of quantum network protocols for Bell pair distribution. Our language is equipped with

primitives for expressing probabilistic and possibilistic behaviors, and with semantics modeling protocol

executions. We establish the properties of PBKAT’s semantics, which we use for quantitative analysis of

protocol behavior. We further implement a tool to automate PBKAT’s usage, which we evaluated on real-world

protocols drawn from the literature. Our results indicate that PBKAT is well suited for both expressing

real-world quantum network protocols and reasoning about their quantitative properties.

CCS Concepts: • Networks → Formal specifications; • Theory of computation → Semantics and
reasoning; • Hardware → Quantum technologies.

Additional Key Words and Phrases: entanglement distribution, probabilistic and possibilistic semantics

1 Introduction
Quantum networks are distributed systems that provide communication services to distributed

quantum applications. They allow not only for the enhancement of existing applications’ capabilities,

but also the emergence of fundamentally new applications. Quantum networks bring many benefits

over their classical counterparts, most notably their ability to increase communication security,

e.g., by enabling unconditionally secure client-server communication, blind cloud computing, and

secure multi-party computation [Gyongyosi and Imre 2022; Pirandola et al. 2020; Wang et al. 2023].

Furthermore, distribution is essential to expand quantum computation beyond the capabilities of

individual quantum-enabled computers to quantum clusters [Kozlowski and Wehner 2019].

Quantum networks exploit non-classical phenomena governed by the laws of quantummechanics,

such as entanglement and superposition. The basic unit of quantum information is a quantum

bit (qubit), a system that can be in one of two basis states, denoted |0⟩ and |1⟩, as well as in their

linear combination, called superposition. The state of a composite (multipartite) quantum system

can be entangled. Entanglement means that qubits are so tightly correlated that the subsystems

cannot be described separately, and measuring (i.e., reading the state of) one effectively measures

all the qubits. A pair of maximally entangled qubits, called a Bell pair, is the basic communication

resource used by quantum network nodes (typically with each qubit of a Bell pair in a different

node). Entanglement brings many benefits for communication, e.g., it prevents eavesdropping

Authors’ Contact Information: Anita Buckley, anita.buckley@usi.ch, Università della Svizzera italiana, Switzerland; Pavel

Chuprikov, pavel.chuprikov@telecom-paris.fr, Télécom Paris, Institut Polytechnique de Paris, France; Rodrigo Otoni,

otonir@usi.ch, Università della Svizzera italiana, Switzerland; Robert Soulé, robert.soule@yale.edu, Yale University, USA;

Robert Rand, rand@uchicago.edu, University of Chicago, USA; Patrick Eugster, eugstp@usi.ch, Università della Svizzera

italiana, Switzerland.

2 A. Buckley et al.

or man-in-the-middle attacks [Pirandola et al. 2020]. However, there are also major obstacles to

realizing long-distance quantum communication, including the no-cloning theorem [Nielsen and

Chuang 2011] and decoherence. The no-cloning theorem in quantum mechanics states that it is

impossible to create an identical copy of an unknown quantum state and decoherence means that the

quantum state degrades quickly over time. These, along with noise and qubit loss, represent major

obstacles to realizing long-distance quantum communication as done in classical store-and-forward

networks. Improvements in hardware and error detection and correction mechanisms [Kenemer

2024] can help in the production of higher-quality quantum states, but entanglement generation
and communication steps such as distillation – the creation of a single Bell state from two or more

imperfect ones – have (intrinsically) high failure probabilities.

We consider quantum network protocols as distributed programs that govern end-to-end Bell pair

distribution among remote nodes, in line with Illiano et al. [2022]; Kozlowski et al. [2023]; Pant

et al. [2019]. The necessity for protocols to handle distributed coordination and failure-prone

primitive operations, combined with scarcity of resources (e.g., memory and communication qubits)

in quantum networks, lead to highly complex protocol behavior. This makes formal reasoning
critical to enable protocol optimization, efficient compilation to hardware, and safe coexistence of

multiple protocols over the same network, in addition to the verification of correctness properties

and quantitative analysis of individual protocols. Importantly, any meaningful reasoning approach

needs to handle both probabilistic behaviors, inherent to quantum communication primitives, and

nondeterminism, arising from protocols running in parallel.

With quantum networks becoming a reality [Knaut et al. 2024; Liu et al. 2024; Stolk et al. 2024] and

entering practice, as illustrated by companies like Cisco and Aliro
1
, and by the recent development of

an operating system for network applications [Donne et al. 2025], the need for formal specification

and verification becomes more pressing. The ability to reason in possibilistic, i.e., (non)deterministic,

terms about protocols (e.g., can a given protocol create a Bell pair between two specified network
nodes?) is an important first step towards network verification, which was recently addressed by the

BellKAT language [Buckley et al. 2024]. However, BellKAT does not capture the probabilistic nature

of quantum mechanics, and thus can not provide quantitative accounts that are crucial in real-

world scenarios. Practical protocols have to deal with the inherently probabilistic nature of certain

network operations, where it becomes important to analyze quantitative properties (e.g., what is
the probability that a Bell pair between two end nodes is created?). The probability of entanglement

creation is the key metric relevant to practitioners, and simulators such as NetSquid [Coopmans

et al. 2021] and SeQUeNCe [Wu et al. 2021] give estimates for it. Rigorous analysis of protocols

thus requires a model that captures probabilistic behavior in real-world quantum networks.

We propose PBKAT, a language that enables quantitative analysis of real-world quantum network

protocols. As the name suggests, PBKAT (Probabilistic BellKAT) is inspired by BellKAT and the

extensive body of work applied to the practical verification of classical networks, particularly

McNetKAT [Smolka et al. 2019b] (based on ProbNetKAT [Foster et al. 2016] and GKAT [Smolka

et al. 2019a]), but it has distinct features that cater to the way quantum communication occurs in

practice. Our language is designed to tackle round-based behavior in realistic quantum network

protocols as currently envisioned by the Quantum Internet Research Group (QIRG)
2
of the Internet

Research Task Force (IRTF), allowing for the encoding of a wide range of practical quantum network

protocols. PBKAT addresses the combination of nondeterminism and probability, as both are innate

to quantum networks, by adapting the work of Bonchi et al. [2021; 2022] to Bell pair distribution.

While PBKAT’s semantics is theoretically rigorous, it also faithfully models real-world quantum

network protocol executions. In particular, we designed the semantics to provide a formalism

1
See https://research.cisco.com and https://www.aliroquantum.com.

2
See https://irtf.org/qirg.

https://research.cisco.com
https://www.aliroquantum.com
https://irtf.org/qirg

A Language for QuantifyingQuantum Network Behavior 3

capable of analyzing quantitative properties of quantum network protocols, catering to practical

applications. PBKAT’s semantics is based on the composition of two protocol semantics, the

abstract semantics representing a PBKAT expression (i.e., protocol specification) as a set of guarded

strings of (uninterpreted) quantum network actions, and the probabilistic interpretation modeling

protocol executions. The abstract semantics can be seen as a guarded variation of synchronous

Kleene algebra (SKA) [Prisacariu 2010; Wagemaker et al. 2019], replacing the union and iteration

constructs with guarded versions 𝑒 +𝛽 𝑓 and 𝑒 (𝛽) , respectively, conditioned on Boolean predicates 𝛽

over network states (i.e., the Bell pairs present in the network). The probabilistic interpretation uses

guarded strings to generate probability distributions over protocol execution outcomes, which are

multisets of Bell pairs. We establish the properties of PBKAT semantics which we prove correct,

enabling us to perform quantitative analysis of real-world quantum network protocols.

We implemented a prototype tool capable of reasoning about quantum network protocols speci-

fied in PBKAT.With it, practitioners can specify and check quantitative properties of protocols, such

as resilience to failure, as well as optimize protocols and manage network resources by predicting

the occurrence and effects of race conditions. We evaluated our tool on 16 protocols inspired by the

literature; our results confirm that PBKAT can express different types of repeater swap protocols

and its semantics is powerful enough to efficiently reason about important properties.

In summary, our contributions are the following:

(1) We design PBKAT, a language with realistic semantics capable of expressing real-world

quantum network protocols for Bell pair distribution, reflecting hardware constraints.

(2) We provide a semantics for PBKAT that enables verification of protocols in quantitative

terms. Notably, our novel semantics allows for reasoning about the combination of proba-

bilistic and nondeterministic behaviors inherent to quantum networks.

(3) We show that PBKAT semantics is sound and well defined.

(4) We implement a prototype tool to showcase the expressiveness and utility of PBKAT for

modeling and quantitative analysis, which we evaluate on 16 repeater swap protocols.

The remainder of the paper is structured as follows. Section 2 introduces the necessary back-

ground and provides a literature review of quantum networks and approaches to network specifi-

cation and verification. Section 3 presents an overview of our formalization. Section 4 formally

describes all aspects of PBKAT and its properties. Section 5 demonstrates how PBKAT can be

exploited for quantitative analysis, and Section 6 describes our tool, its usage, and the experimental

results of our evaluation. Finally, Section 7 presents closing remarks and future work. For brevity,

we include complete experimental results, detailed analysis and validation of case studies, and

proofs in the Appendices A, B, C and D.

2 Background and Related Work
We first introduce the basic concepts surrounding quantum networks and describe the concrete

network model proposed by the Quantum Internet Research Group (QIRG) of the Internet Research

Task Force (IRTF). We thenmotivate the need for quantitative reasoning about network properties in

practice, and discuss existing approaches for (probabilistic) network specification and verification.

Bell pairs. Bell pairs, named after Bell [1964], are the four entangled two-qubit quantum states:

1√
2

|00⟩ ± 1√
2

|11⟩ and 1√
2

|01⟩ ± 1√
2

|10⟩, where |𝑖 𝑗⟩ represents a pair of qubits in the states |𝑖⟩ and | 𝑗⟩, and
its coefficient squared represents the probability of being read. They are entangled in the sense that

reading the value of the 1
st
qubit determines the value of the 2

nd
, e.g., in

1√
2

|01⟩ + 1√
2

|10⟩ the state |01⟩
denotes that if the 1

st
qubit is 0 then the 2

nd
is 1; coefficients

1√
2

represent a
1

2
chance of reading either

|01⟩ or |10⟩. The four Bell states are equivalent, as it is possible to transform any Bell pair into another

4 A. Buckley et al.

*

Repeater with classical
and quantum capabilities

Quantum capable end node

Quantum channel

Classical channel

* Quantum source

Fig. 1. Illustration of a quantum

network for our running example.

with single-qubit operations (e.g. a bit-flip) performed locally on

only one of the qubits. Since Bell pairs are maximally entangled
(i.e., they have the strongest non-classical correlations of all possi-

ble two-qubit states), they enable remote quantum operations (cf.

Figure 2), making them particularly useful as a generic building

block for distributed quantum applications.

Quantum network hardware and functionality. The laws of quan-
tum mechanics grant new capabilities to quantum networks be-

yond their classical counterparts, while imposing constraints on

their design. In this paragraph, we provide a high-level overview

of quantum network architecture, which is illustrated in Figure 1.

The core component are quantum capable end nodes that can
receive and process entangled qubits and on which quantum ap-

plications are run. Each node uses a dedicated subset of qubits,

called communication qubits [Kozlowski and Wehner 2019], to

generate distributed entanglement (Bell pairs); and once a Bell pair is generated, the constituent

qubits can be either immediately processed or transferred into memory. At the start of the entangle-

ment distribution process, a quantum source creates Bell pairs locally. Once a Bell pair is created,
one or both of its entangled qubits are transmitted over the quantum channels. The quality of

entanglement during direct transmission decreases exponentially with the distance. Long distance

transmission is thus achieved by using quantum repeaters, making them the key building blocks of

quantum networks [Briegel et al. 1998; Towsley 2021]. A quantum repeater acts as an intermediary

node between two other nodes (as illustrated in the network in Figure 1) by performing entanglement
swapping. In this process, the repeater consumes the Bell pairs it shares with each of the other two

nodes to create a new Bell pair connecting the nodes (directly). Another important physical process

in quantum networks, called entanglement distillation, addresses decoherence (quantum state degra-

dation over time), by generating a single Bell state from two or more imperfect ones. Distillation is

inherently probabilistic, however: when it succeeds, the quality of the state is improved, and when

it fails all the Bell pairs are destroyed. This substantially increases resource demands [Pompili et al.

2021]. Current quantum networks benefit from heralded schemes [Wehner et al. 2018] to distinguish

Physical Layer
create Bell pair

Link Layer
transmit, swap, distill

Network Layer
end-to-end entanglement

distribution protocols

Transport Layer
teleportation protocol

Application Layer
QKD protocol E91

Fig. 2. Platform indepen-

dent quantum network

protocol stack [Abane

et al. 2024; Illiano et al.

2022; Li et al. 2024] with

protocol examples.

between successful attempts and failures, meaning that a classical signal

announces that a Bell pair is successfully generated. Quantum networks

also depend on classical channels providing tight synchronization and

timely signaling, as required by entanglement distribution schemes.

Quantum network protocols. Quantum networks, which enable dis-

tributed applications, depend on quantum network protocols to establish

end-to-end Bell pair distribution [Briegel et al. 1998; Kozlowski et al. 2023].

In this work we focus on protocols in the network layer of the quan-

tum network protocol stack, as illustrated in Figure 2. These protocols

rely on quantum and classical networks working together, as outlined

in [Kozlowski and Wehner 2019; Li et al. 2023; Rabbie et al. 2022].

Quantum network protocols orchestrate end-to-end Bell pair distri-

bution through four key basic actions. Following the notation of Bell-

KAT [Buckley et al. 2024], these basic actions can create a Bell pair locally

at a source, transmit qubits of a Bell pair over a physical quantum channel,

swap Bell pairs via repeaters, and distill Bell pairs to improve their quality.

We give two running examples of protocols for the network in Figure 1

A Language for QuantifyingQuantum Network Behavior 5

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

(a)

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

(b)

Physical path •∼• Bell pairNode

Fig. 3. Entanglement generating protocols (progressing top-

to-bottom) on the 3-node network from Figure 1, establishing

Bell pairs between nodes 𝐴 and 𝐵. Protocol (a) specifies en-
tanglement swapping realized by Pompili et al. [2021] and (b)

describes distillation as simulated in [Coopmans et al. 2021].

that use these basic actions to estab-

lish Bell pairs between the nodes 𝐴

and 𝐵, which we denote as 𝐴 ∼ 𝐵.

Both protocols in Figure 3 have three

rounds. Each round contains multi-

ple actions executed concurrently and

passes Bell pairs to the subsequent

round. At the start, both protocols act

in the same manner, creating two Bell

pairs at the source 𝐶 . Different trans-

mission capabilities at the node𝐶 neces-

sitate different actions in subsequent

rounds. Protocol (a) transmits half of
each Bell pair created at𝐶 to the neigh-

bors𝐴 and 𝐵 and keeps the other halves

in 𝐶’s memory to obtain 𝐴∼𝐶 and 𝐵∼𝐶
respectively, then performs a swap at 𝐶 , resulting in 𝐴∼𝐵. The swap protocol consumes two

Bell pairs with a common endpoint to produce a single Bell pair with the opposite endpoints. Pro-

tocol (b) transmits both qubits of each Bell pair 𝐶∼𝐶 to the opposite neighbors, leading to two

copies of 𝐴∼𝐵, and then distills them into a fresh 𝐴∼𝐵 of a better quality.

Contention between (sub)protocols running in parallel can lead to nondeterministic behavior,

for instance due to resource underprovisioning or failures, as illustrated with the next example.

Assume that, with some probability, the first round of protocol (a) only succeeds in creating one

copy of𝐶∼𝐶 instead of two. The missing𝐶∼𝐶 copy will lead to resource contention (race condition):

when the second round performs two transmits in parallel (one that requires 𝐶∼𝐶 to produce

𝐴∼𝐶 and the other that requires 𝐶 ∼𝐶 to produce 𝐵 ∼𝐶), only one of the two transmits will

execute, i.e., either 𝐴∼𝐶 or 𝐵∼𝐶 will be produced nondeterministically (as shown in Figure 4).

Such competition for available Bell pairs within a round between protocols running in parallel

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

𝐴 𝐶 𝐵

Fig. 4. Entanglement swap protocol (a) in Figure 3 when only

one local Bell pair𝐶∼𝐶 (instead of two) is successfully created in

the first round. In the second round𝐶∼𝐶 is nondeterministically

transmitted to either𝐴∼𝐶 (left) or 𝐵∼𝐶 (right). In the third round

swap cannot execute as it lacks the required 𝐴∼𝐶 and 𝐵∼𝐶 , so
the Bell pair available after round two remains untouched.

is the only source of nondeterminism in

PBKAT. On the other hand, if the sec-

ond round performs the two transmits

in a prioritized manner on the same sin-

gle input Bell pair 𝐶∼𝐶 , e.g., if the pri-
ority is given to transmitting to node

𝐴 (the transmit that aims to produce

𝐵∼𝐶 is attempted after the transmit to

𝐴∼𝐶), only the transmit to𝐴∼𝐶 is deter-

ministically executed (shown on the left

in Figure 4). In Section 4.1, we capture

these two ways of combining actions

within a round, namely, in parallel or

in a prioritized manner, with PBKAT’s

parallel and ordered composition.

Given the intricacies above, the following questions naturally arise:

• What is the probability that protocol (a) produces Bell pair 𝐴∼𝐵?
• What are minimum and maximum probabilities that protocol (b) produces Bell pair 𝐴∼𝐵?
• What is the expected number of iterations required for (b) to generate 𝐴∼𝐵?

6 A. Buckley et al.

• How can we improve the rate at which a protocol generates 𝐴∼𝐵?
• Is one protocol an optimized version of another protocol considering network constraints?

Related work on algebraic approaches. When designing language models, in order to benefit from

strong mathematical foundations, it is natural to opt for a (co)algebraic approach. As discussed in

the previous paragraph, reasoning about real-world quantum network protocols requires handling

the combination of probabilistic behaviors and nondeterminism. To verify even simple properties

in quantum networks, concurrency must be considered: to produce one end-to-end Bell pair, many

entangled pairs must be created and distributed over intermediate nodes, multiple nodes simultane-

ously compete for same pairs, and network actions take several pairs as inputs. Thus, a suitable

algebraic model must handle concurrent probabilistic and possibilistic behaviors synchronously.

In what follows, we overview the related lines of work that address some of these aspects (in

specific domains). Algebraic reasoning about the packet forwarding behavior in classical networks

originated with the seminal work on NetKAT [Anderson et al. 2014]. Probabilistic behavior in

classical networks was considered in ProbNetKAT [Foster et al. 2016], yielding a scalable tool

for verifying packet forwarding protocols with McNetKAT [Smolka et al. 2019b]. McNetKAT’s

scalability is attributable to its foundation in Guarded KAT (GKAT) [Smolka et al. 2019a], whose

equational theory is (almost) linear time and is particularly applicable since it allows for a proba-

bilistic interpretation. However, these works are not directly applicable to quantum networks, as

the distribution of Bell pairs (network resources) has no counterpart in classical networks, which

instead handle the forwarding of packets (information carriers). Furthermore, none of these works

address the combination of probabilistic and nondeterministic behaviors. To handle such systems,

Jacobs [2008] proposes the monad of nonempty convex sets of probability distributions, which com-

bines the powerset monad (that models nondeterministic choice) and the probability distribution

monad (that models probabilistic choice). Subsequently, Bonchi et al. [2021; 2022] and Mio et al.

[2021] present these monads via algebraic theories for nondeterminism and probability. To the best

of our knowledge, these theories have never been implemented. In the quantum context, Buckley

et al. [2024] propose the BellKAT language to model concurrent behavior in quantum networks,

inspired by synchronous Kleene algebra (SKA) [Prisacariu 2010], which allows for an alternative

way of handling concurrency by layering synchronous actions into rounds. Conveniently, SKA

was proven to have a sound and complete semantics for an analogue of Salomaa’s axiomatization

of Kleene algebra [Wagemaker et al. 2019]. However, BellKAT (like SKA) lacks probabilities and

is thus incapable of modeling the innate randomness and uncertainty in quantum systems, mak-

ing it unsuitable for quantitative analysis of protocols that arise in practice. And, due to known

fundamental limitations on combining standard Kleene algebra techniques with probabilities (see

related discussions in GKAT, ProbNetKAT and in the earlier work of Mislove [2006] and Varacca

and Winskel [2006]), BellKAT semantics cannot be easily extended to accommodate probabilities.

Related work on reasoning about quantum systems. While quantum network testbeds are starting

to emerge and move from the lab [Pompili et al. 2021] to metropolitan scale [Knaut et al. 2024; Liu

et al. 2024; Stolk et al. 2024], supported by many publicly available quantum network simulators

(e.g., NetSquid [Coopmans et al. 2021], SeQUeNCe [Wu et al. 2021], QuNetSim [DiAdamo et al. 2021],

QuISP [Satoh et al. 2022], SimulaQron [Dahlberg and Wehner 2018]), and verification of classical

network protocols has been intensively investigated, BellKAT is the only prior work we know that

considers formal verification of quantum networks. It is worth noting that the properties of quantum

network protocols which we strive to verify in this work are different from the properties at the

application layer (cf. Figure 2), as considered in quantum program verification, where the actual

quantum states are of prime importance. Our focus on Bell pair distribution abstracts away the

details of quantum computation that would be necessary to verify quantum algorithms. Therefore,

A Language for QuantifyingQuantum Network Behavior 7

our approach departs from the broader landscape of formal quantum program verification, which

features a variety of Hoare-style logics [Unruh 2019; Ying 2012; Zhou et al. 2019] and verification

tools [Chareton et al. 2021; Hietala et al. 2021; Zhou et al. 2023]. Lewis et al. [2023] and Chareton

et al. [2022] provide in-depth surveys of quantum program verification.

The next section introduces our network abstractions (based on the literature on quantum

networks [Kozlowski et al. 2023; Pant et al. 2019; Van Meter and Touch 2013] and their specifica-

tions [Buckley et al. 2024]), made to capture typical quantum network behaviors.

3 PBKAT Overview
We introduce the key features of our PBKAT language and the main challenges in designing its

probabilistic semantics for quantitative reasoning about real-world protocols. The main concepts

will be explained through protocols from our running examples in Figures 3 and 4. We first specify

the protocols in PBKAT and illustrate how specifications capture the possibility of actions failing.

Next, we rewrite the protocols, showcasing how to control nondeterminism to better handle failures.

Finally, we show how to analytically compute the expected outputs of protocols.

Network behavior. To tame parallelism, we divide entanglement generating protocols into rounds
in the manner of Van Meter and Touch [2013]. Each round represents a time window containing

synchronously executed basic actions (see Figure 3 above). Basic actions within one round can

only act on the set of Bell pairs present in the network at the start of the said round, with race

conditions emerging if resources are insufficient, i.e., if less Bell pairs are available than required

by the actions (as exemplified in Figure 4). In order for a basic action to execute, it must thus first

acquire a specific set of Bell pairs from those available in the corresponding round, and then use

these Bell pairs to generate new entangled pairs. In realistic networks, it is likely that the action fails

to generate new pairs, in which case the acquired Bell pairs are destroyed and no new Bell pairs

are produced. If the required set cannot be acquired, the action is not executed and no Bell pairs are

consumed. After execution, a heralding signal acknowledges the success or failure of each action.

The next round then acts on the set of Bell pairs either produced or not consumed by the prior

round. We introduce the notion of a scheduler that has a full view of the Bell pairs in the network.

If at the start of a round there are not enough Bell pairs for all the actions, the scheduler chooses

nondeterministically which actions are executed. Leaving nondeterminism unresolved thus covers

all the choices (different strategies) of a scheduler.

Network constraints. A quantum network must keep track of the Bell pairs it contains. To that end,

we assume unique node identifiers that are tracked across the network, along with the Bell pairs, via

classical channels. Due to hardware constraints, a concrete quantum network is capable of handling

only a limited number of Bell pairs in each round. In a network with nodes 𝐴1, . . . , 𝐴𝑙 we denote

the maximal number of Bell pairs possible between 𝐴𝑖 and 𝐴 𝑗 by𝑚𝑖 𝑗 . For example, for protocol (b)

in Figure 3 the network must be capable of handling at least two copies of 𝐶∼𝐶 locally at node 𝐶

and two copies of 𝐴∼𝐵 between nodes 𝐴 and 𝐵. Formally we define network state 𝑎 ∈ M(BP) to
be a multiset of Bell pairs present in the network; we represent it by {{𝑛𝑖 𝑗 ×𝐴𝑖∼𝐴 𝑗 }}1≤𝑖≤ 𝑗≤𝑙 , where
0 ≤ 𝑛𝑖 𝑗 ≤ 𝑚𝑖 𝑗 is the number of Bell pairs of type 𝐴𝑖∼𝐴 𝑗 , called the multiplicity of 𝐴𝑖∼𝐴 𝑗 in 𝑎. (Here

Bell pairs are labeled by the location of their qubits, so 2 ×𝐴𝑖∼𝐴 𝑗 are indistinguishable, but could

carry additional classical data like time stamp or memory location. This representation captures

Bell pairs at the appropriate level of abstraction for quantum network protocols in PBKAT.)

Actions. Basic actions are the primitives for manipulating Bell pairs. A basic action has the form

𝑟 ⊲ (Σ 𝑝 · 𝑜), whose effect entails consuming a multiset of required Bell pairs 𝑟 and producing from

it a multiset of (output) Bell pairs 𝑜 with probability 𝑝; the sum Σ ranges over possible outputs as

8 A. Buckley et al.

a probability distribution Σ 𝑝 · 𝑜 . The probabilistic nature of quantum actions manifests itself in

two ways, either operations are inherently probabilistic (e.g., distillation) or may fail with some

probability due to decoherence, qubit loss, or other hardware limitations. We model such failures

as 𝑟 ⊲ (𝑝 · 𝑜 + (1 − 𝑝) · ∅), or 𝑟 ⊲𝑝 𝑜 for short, where 𝑝 is the probability that the action succeeds.

For example, a swap of 𝐴∼𝐶 and 𝐵∼𝐶 at node 𝐶 in Figure 3(a), which consumes 𝐴∼𝐶 and 𝐵∼𝐶 to

output 𝐴∼𝐵 with probability 𝑝 (or outputs ∅ with probability 1 − 𝑝), denoted sw⟨𝐴∼𝐵 @𝐶⟩𝑝 , is
represented as {{𝐴∼𝐶, 𝐵∼𝐶}} ⊲𝑝 {{𝐴∼𝐵}}. A local creation at node 𝐶 succeeding with probability 𝑝

is denoted cr⟨𝐶⟩𝑝 and represented as ∅ ⊲𝑝 {{𝐶∼𝐶}}. Similarly, tr⟨𝐶→𝐴∼𝐵⟩𝑝 represents the action

that physically transmits one qubit of the Bell pair 𝐶∼𝐶 to node 𝐴 and the other qubit to node 𝐵,

but can drop all qubits with probability 1 − 𝑝 . Distillation di⟨𝐴∼𝐵⟩𝑝 requires two copies of 𝐴∼𝐵 to

output a fresh 𝐴∼𝐵 and inherently fails with probability 1 − 𝑝 at least
1

2
[Coopmans et al. 2021].

When it is clear from the context or not relevant, we omit writing the index 𝑝 .

We provide shorthand notations for common actions, with deterministic (𝑝 = 1) wait and drop:

swap sw⟨𝐴∼𝐵 @𝐶⟩𝑝 ≜ {{𝐴∼𝐶, 𝐵∼𝐶}} ⊲𝑝 {{𝐴∼𝐵}}
transmit tr⟨𝐶→𝐴∼𝐵⟩𝑝 ≜ {{𝐶∼𝐶}} ⊲𝑝 {{𝐴∼𝐵}}
distill di⟨𝐴∼𝐵⟩𝑝 ≜ {{𝐴∼𝐵,𝐴∼𝐵}} ⊲𝑝 {{𝐴∼𝐵}}

create cr⟨𝐶⟩𝑝 ≜ ∅ ⊲𝑝 {{𝐶∼𝐶}}
wait wait⟨𝑟 ⟩ ≜ 𝑟 ⊲ 𝑟

drop drop⟨𝑟 ⟩ ≜ 𝑟 ⊲ ∅
With general basic actions users can specify other quantum operations, for instance, create a

Bell pair between neighboring nodes directly, produce multiple Bell pairs, or output different

Bell pairs with different probabilities. In practice, statistical probabilities for each quantum operation

can be estimated from experiments and simulations as will be done in Section 5.3.

Guarded protocols. To specify the control flow of PBKAT protocols, we introduce guards that act
as additional conditions at the start and end of each round, checking which Bell pairs are present in

the network. A guard 𝛼 is a predicate over a multiset of Bell pairsM(BP), thus it can be represented
by the set of all multisets of Bell pairs for which the test succeeds. The primitives 1 (skip) and 0

(abort) behave like guards that always succeed and abort, respectively. We combine actions and

guards into expressions to build protocols. Protocols 𝑒 and 𝑓 can be composed in the following

ways: sequentially by combining subsequent rounds (𝑒 ; 𝑓), concurrently by combining actions

within each round in parallel (𝑒 ∥ 𝑓) or in prioritized manner (𝑒 ◦ 𝑓) (as in the motivating example

on page 5), conditionally by using branching statements (if 𝛼 then 𝑒 else 𝑓 which we denote as

𝑒 +𝛼 𝑓), and iteratively through while loops (while 𝛼 do 𝑒 which we denote as 𝑒 (𝛼)). Importantly,

single rounds have no iterative behavior, there is no interleaving between different rounds, and

multiround iteration is guarded (i.e., we have while loops but no Kleene star).

As a first attempt, protocols (a) and (b) in Figure 3 can be expressed without using guards:

Protocol (a) (cr⟨𝐶⟩ ◦ cr⟨𝐶⟩) ; (tr⟨𝐶→𝐴∼𝐶⟩ ∥ tr⟨𝐶→𝐵∼𝐶⟩) ; sw⟨𝐴∼𝐵 @𝐶⟩
Protocol (b) (cr⟨𝐶⟩ ◦ cr⟨𝐶⟩) ; (tr⟨𝐶→𝐴∼𝐵⟩ ◦ tr⟨𝐶→𝐴∼𝐵⟩) ; di⟨𝐴∼𝐵⟩

Protocol (a) creates two Bell pairs 𝐶∼𝐶 locally at node 𝐶 in round one, transmits one copy to 𝐴∼𝐶
and the other to 𝐵∼𝐶 in round two, which are swapped at node 𝐶 to generate Bell pair 𝐴∼𝐵 in

round three. Protocol (b) has the same first round, then transmits both Bell pairs 𝐶∼𝐶 to 𝐴∼𝐵 in

round two, which are distilled in round three. We note that the swap action in protocol (a) attempts

execution regardless of whether the required Bell pairs 𝐴∼𝐶 and 𝐵∼𝐶 have been successfully

generated; if they are not available the protocol idly waits for one round (as illustrated for round

three in Figure 4). Thus, it is sensible to condition the swap action on guard 𝛼 , which attempts its

execution only if there are both 𝐴∼𝐶 and 𝐵∼𝐶 available, otherwise the present Bell pair is dropped:

Protocol (a1) (cr⟨𝐶⟩ ◦ cr⟨𝐶⟩) ; (tr⟨𝐶→𝐴∼𝐶⟩ ∥ tr⟨𝐶→𝐵∼𝐶⟩);
(if 𝛼 then sw⟨𝐴∼𝐵 @𝐶⟩ else (drop⟨𝐴∼𝐶⟩ ∥ drop⟨𝐵∼𝐶⟩))

A Language for QuantifyingQuantum Network Behavior 9

Similarly, the unguarded version of protocol (b) cannot distinguish between output 𝐴∼𝐵 that is

produced by distillation in round three or by transmission in round two. So, we modify the protocol

to repeatedly transmit qubits to nodes 𝐴 and 𝐵 until two Bell pairs 𝐴∼𝐵 are generated, as required

for distillation. The guard 𝛽 below checks for the absence of two copies of 𝐴∼𝐵:

Protocol (b1) (while 𝛽 do (cr⟨𝐶⟩ ◦ cr⟨𝐶⟩) ; (tr⟨𝐶→𝐴∼𝐵⟩ ◦ tr⟨𝐶→𝐴∼𝐵⟩)) ; di⟨𝐴∼𝐵⟩

For the inherently probabilistic distillation to succeed, multiple iterations of the entire protocol

(b1) are likely to be needed, which can be expressed with another while loop: while 𝛾 do protocol

(b1), where the guard 𝛾 checks for the absence of the (one distilled) Bell pair 𝐴∼𝐵. Such strate-

gies of repeated attempts until success are universally employed in real-world quantum network

protocols [Pompili et al. 2021; Van Meter et al. 2011].

Probabilistic reasoning. The innately probabilistic nature of quantum operations and thus quan-

tum networks requires probabilistic reasoning. Moreover, the semantics have to be probabilistic

too, as the end result of protocol execution is a probability distribution over the possible network

states (resulting Bell pairs). Formally, the input to a given protocol is a multiset of Bell pairs, but

the output is in D(M(BP)) – the set of probability (sub)distributions overM(BP) representing
possible execution outcomes. (In the next paragraph we will show that this set is convex.) Thus, a

PBKAT protocol can be thought of as a function that takes a network state as input and returns,

with a range of probabilities, Bell pairs that represent the network state after protocol execution.

To enable quantitative reasoning about protocols specified in PBKAT, we assign concrete

probabilities of failures to basic actions. Consider our running example protocols (a1) and (b1):

Protocol (a1) (cr⟨𝐶⟩0.9 ◦ cr⟨𝐶⟩0.9) ; (tr⟨𝐶→𝐴∼𝐶⟩0.8 ∥ tr⟨𝐶→𝐵∼𝐶⟩0.7);
(sw⟨𝐴∼𝐵 @𝐶⟩0.6 +𝛼 (drop⟨𝐴∼𝐶⟩ ∥ drop⟨𝐵∼𝐶⟩))

Protocol (b1) ((cr⟨𝐶⟩0.9 ◦ cr⟨𝐶⟩0.9) ; (tr⟨𝐶→𝐴∼𝐵⟩0.3 ◦ tr⟨𝐶→𝐴∼𝐵⟩0.3)) (𝛽) ; di⟨𝐴∼𝐵⟩0.5

Now, we can verify that (when executed) protocols behave as expected. For protocol (a1) to success-

fully generate the Bell pair 𝐴∼𝐵, all basic actions must succeed, which happens with probability

0.9×0.9×0.8×0.7×0.6 = 0.27216. On the other hand, if any basic action fails, the unused Bell pairs

are dropped (in round three). Thus, protocol (a1) outputs distribution 0.27216·{{𝐴∼𝐵}} + 0.72784·∅.
Similarly, protocol (b1) succeeds with probability 0.5, because the while loop iterates until both

Bell pairs 𝐴∼𝐵 are available for distillation, with the expected number of iterations
1

0.92
0.32

≈ 14.

Nondeterminism. Nondeterminism in PBKAT models resource contention which is essential for

quantum network protocols. Nondeterminism arises exclusively from parallel composition, where

both parallel parts execute concurrently, and if there are not enough Bell pairs for both, there are

different nondeterministic choices in how Bell pairs are allocated to each part.

For example, assuming the same success probabilities of basic actions as above, consider again

possible execution outcomes of protocol (a): Figure 3 illustrates its execution when all basic actions

succeed, and Figure 4 shows the two nondeterministic transmissions in which either tr⟨𝐶→𝐵∼𝐶⟩0.7

or tr⟨𝐶→𝐴∼𝐶⟩0.8 succeeds (after only one Bell pair 𝐶∼𝐶 is successfully created in the first round).

Protocol (a) thus yields two different output distributions, which we compute by tracing all possible

executions of basic actions and compounding their probabilities, as shown in Figure 5,

𝜇 = 0.27216·{{𝐴∼𝐵}} + 0.1944·{{𝐴∼𝐶}} + 0.2394·{{𝐵∼𝐶}} + 0.29404·∅
𝜇′ = 0.27216·{{𝐴∼𝐵}} + 0.3384·{{𝐴∼𝐶}} + 0.1134·{{𝐵∼𝐶}} + 0.27604·∅

10 A. Buckley et al.

where 𝜇 and 𝜇′ are obtained from cyan and brown branches, respectively. All possible output distri-

butions thus range between 𝜇 and 𝜇′ and are captured in the following convex set of distributions:

{𝑞 · 𝜇 + (1 − 𝑞) · 𝜇′ | 𝑞 ∈ [0, 1] }

In comparison, any execution of the guarded protocol (a1), also shown in Figure 5, results in the

output distribution 0.27216·{{𝐴∼𝐵}} + 0.72784·∅, irrespective of the nondeterministic choice.

∅ Δ1

0.81

{{𝐶∼𝐶,𝐶∼𝐶 }}

0.18 {{𝐶∼𝐶 }}

0.01

∅

Δ2

Δ′
2

Δ

Δ𝑠

{{𝐴∼𝐶, 𝐵∼𝐶 }}

{{𝐴∼𝐶 }}

{{𝐵∼𝐶 }}

∅

0.56

0.24

0.14

0.06 0.8

0.2

0.7

0.3

1

Δ3

Δ𝑑

Δ𝑑

Δ𝑠

{{𝐴∼𝐵}}

∅

0.6

0.4

1

1

1

∅ Δ1

0.81

{{𝐶∼𝐶,𝐶∼𝐶 }}

0.18 {{𝐶∼𝐶 }}

0.01

∅

Δ2

Δ′
2

Δ

Δ𝑠

{{𝐴∼𝐶, 𝐵∼𝐶 }}

{{𝐴∼𝐶 }}

{{𝐵∼𝐶 }}

∅

0.56

0.24

0.14

0.06 0.8

0.2

0.7

0.3

1

Δ3

Δ𝑠

Δ𝑠

Δ𝑠

{{𝐴∼𝐵}}

{{𝐴∼𝐶 }}

{{𝐵∼𝐶 }}

∅

0.6

0.4

1

1

1

Fig. 5. The executions of Protocols (a1) and (a), drawn in the top and bottom figures, showing all possible

executions of actions through three rounds (progressing left to right). Dashed branches denote probabilistic

choice, whereas full branches denote (non)deterministic choice. The nondeterministic choices of executing

either tr⟨𝐶→𝐵∼𝐶⟩0.7 or tr⟨𝐶→𝐴∼𝐶⟩0.8 are shown as cyan or brown branches, respectively.

The above examples serve as the intuition to formally model nondeterminism in the following

way. We capture all possible execution outcomes of a given protocol in a (convex) set of probability

(sub)distributions over multisets of Bell pairs inM(BP), i.e., as an element in C(M(BP)) for the
monad C of convex sets of probability subdistributions overM(BP) (cf. definition in Section 4.2).

Combining probabilities with nondeterminism. To formally address the fundamental challenges of

combining probabilities with nondeterminism we constrain our language model in three ways: (i)

with conditionals and while loops we constrain nondeterminism to arise only from parallel compo-

sition, (ii) we confine this nondeterminism to single rounds by modeling synchronous concurrency

(similar to SKA [Prisacariu 2010]), and (iii) we exclude the probabilistic choice operator. Our lan-

guage design choices do not restrict quantum network protocol behavior: for (i), practical protocols

are guarded and can thus be expressed with conditionals and while loops; for (ii), PBKAT rounds

correspond to time synchronization points, thus the only nondeterminism arises from interactions

within rounds; and for (iii), the control flow of practical protocols is not probabilistic. These design

choices offer two main benefits. First, the PBKAT language is simple and yet expressive enough

to faithfully model real-world protocols for end-to-end Bell pair distribution from literature (cf.

Section 5.3) including all protocols specifiable in BellKAT. Second, PBKAT can handle probabilistic

protocols in the presence of such constrained nondeterminism.

A Language for QuantifyingQuantum Network Behavior 11

Nodes N ::= 𝐴, 𝐵,𝐶, ...

Bell pairs BP ∋ 𝑏𝑝 ::= N∼N
Multisets M(BP) ∋ 𝑎, 𝑏, 𝑟, 𝑜 ::= {{𝑏𝑝1, ..., 𝑏𝑝𝑘 }}

| 𝑎 ⊎ 𝑏 multiset union
Guards BExp ∋ 𝛼, 𝛽 ::= 0 false (abort)

| 1 true (skip)
| 𝑎 atomic guard
| 𝛼 ∧ 𝛽 𝛼 and 𝛽

| 𝛼 ∨ 𝛽 𝛼 or 𝛽

| 𝛼 not 𝛼

Protocol expressions Exp ∋ 𝑒, 𝑓 ::= 𝑟 ⊲ (Σ 𝑝 ·𝑜) basic action
| 𝛼 guard
| 𝑒 ; 𝑓 sequential composition
| 𝑒 ∥ 𝑓 parallel composition
| 𝑒 ◦ 𝑓 ordered composition
| 𝑒 +𝛼 𝑓 if 𝛼 then 𝑒 else 𝑓
| 𝑒 (𝛼) while 𝛼 do 𝑒

Fig. 6. PBKAT syntax. Basic action 𝑟 ⊲ (Σ 𝑝 ·𝑜) has two parameters, 𝑟 ∈ M(BP) is a multiset containing the

required Bell pairs and Σ 𝑝 ·𝑜 ∈ D(M(BP)) is a probability distribution over output multisets of Bell pairs.

4 PBKAT Language
This section presents syntax (Section 4.1), semantics (Section 4.2), and properties (Section 4.3).

4.1 Syntax
The complete PBKAT syntax is given in Figure 6. A Bell pair bp is represented by an unordered

pair of nodes. For multisets of Bell pairs 𝑎, 𝑎′ ∈ M(BP) we write 𝑎 ⊎ 𝑎′ for additive multiset

union and 𝑎\𝑎′ for multiset difference. We assume a finite number of network nodes and limited

numbers of Bell pairs at each node, resulting in a finite number of network states. Therefore, all

probability (sub)distributions over the states are finitely supported. Guards are predicates over

multisets of Bell pairs. (We use “multiset of Bell pairs” and “network state” interchangeably.) Guard

0 acts as abort, and guard 1 represents the absence of guards (and actions), which we refer to

as skip. Language users specify protocols as expressions composed of basic actions and guards

that act as additional controls on which actions are executed, and are combined by operators for

sequential, parallel, and ordered composition, as well as conditionals and while loops. The sequential

composition (𝑒 ; 𝑓) models sequential transitioning through rounds by first applying 𝑒 to the input

multiset and then applying 𝑓 to each multiset produced by 𝑒 . Parallel and ordered composition

govern the execution of actions that occur synchronously within a single round. Here, parallel

composition (𝑒 ∥ 𝑓) allows running 𝑒 and 𝑓 in parallel, thus allowing for resource competition (in a

nondeterministic manner), while ordered composition (𝑒 ◦ 𝑓) imposes that 𝑒 has preference over 𝑓

in accessing the available Bell pairs in each round. When a guard fails, it aborts without further

progress, resulting in no output. Importantly, abort must be distinguished from a basic action

that consumes the required Bell pairs and fails and thus outputs no Bell pairs. The if-then-else and
while loops are guarded variants of nondeterministic choice and Kleene star (typically denoted

as + and
★
in Kleene algebras, which are notably not part of PBKAT’s syntax). By excluding +

and
★
from PBKAT’s syntax we constrain nondeterminism to the one arising only from parallel

composition, making our language simpler. Yet, conditionals and while loops together with other

12 A. Buckley et al.

PBKAT constructs for sequential, parallel and ordered composition are expressive enough to encode

typical quantum network protocols (where the control flow is completely deterministic), including

all protocols considered in BellKAT. Importantly, all protocols for end-to-end Bell pair distribution

can be specified as PBKAT expressions.

4.2 Semantics
Exp 𝐼 (−) P(GSS)

⟦−⟧ex

M(BP) → C(M(BP))

⟦−⟧

Fig. 7. PBKAT’s semantics.

The diagram in Figure 7 overviews the key components in

PBKAT’s semantics. The semantics ⟦−⟧ takes a protocol

expression in Exp and returns a function from input 𝑎 ∈
M(BP) to probability subdistributions over network states.
It is defined in two steps. The motivation for the two-step

construction of semantics is a way to have an abstract

language model which permits concrete interpretations, as

commonly done in the literature (cf. [Smolka et al. 2019a]

and [Buckley et al. 2024]). Our language model captures

the control flow (first step), and ⟦−⟧ex gives the execution semantics on concrete input network

states (second step). Concretely, the abstract semantics 𝐼 (−) first transforms an expression into a

set of guarded strings in GSS = P(M(BP)) ; (P(Π) ;P(M(BP)))∗, which combine sets of network

states and (uninterpreted) actions. Then, ⟦−⟧ex converts each element in GSS to the sequential

compositions of guards and actions, and gives them probabilistic interpretation. A formal definition

of the monad C for combining probabilities with nondeterminism is given below.

A primer on combining nondeterminism with probability. This paragraph introduces the back-

ground mathematics necessary to understand the semantics of PBKAT. The following definitions

are inspired by the monad C of convex sets of probability distributions [Jacobs 2008]. In particular,

the presentation of C by the equational theory of convex semilattices [Bonchi et al. 2021, 2022] is

well suited for modeling and reasoning about systems combining nondeterminism and probability,

as is the case of quantum networks.

A subdistribution over multiset of Bell pairs is a probability assignment 𝜇 : M(BP) → [0, 1]
summing up to at most 1, i.e.,

∑
𝜇 (𝑎) ≤ 1, where 𝜇 (𝑎) ≠ 0 for finitely many multisets 𝑎 ∈ M(BP).

In particular, the Dirac distribution (or point mass) on 𝑎 ∈ M(BP) is defined to be:

𝛿𝑎 (𝑏) =
{

1 if 𝑎 = 𝑏 0 otherwise

Following the standard identification, we write 𝜇 as

∑
𝑎∈M(BP) 𝜇 (𝑎) ·𝑎, by summing over nonzero

𝜇 (𝑎) and identifying 𝛿𝑎 with 𝑎 ∈ M(BP). The set of all subdistributions is thus defined as:

D(M(BP)) = { Σ 𝑝 ·𝑎 | 𝑝 ∈ [0, 1], Σ 𝑝 ≤ 1, 𝑎 ∈ M(BP) }

For a set 𝑆 ⊆ D(M(BP)), its convex closure conv(𝑆) is the smallest convex set that contains 𝑆 :

conv(𝑆) = { Σ𝑞 ·𝜇 | 𝑞 ∈ [0, 1], Σ𝑞 = 1, 𝜇 ∈ 𝑆 }

We say that a convex set 𝑆 is (finitely) generated by its (finite) subset 𝑇 if 𝑆 = conv(𝑇). This leads
to the definition of the set of finitely generated convex sets of subdistributions over M(BP):

C(M(BP)) = { 𝑆 ⊆ D(M(BP)) | 𝑆 finitely generated and 𝑆 = conv(𝑆) }

From here on we use shorthand notation for monad compositions, e.g., the above sets areMBP,

DMBP and CMBP. Monad composition is done through flattening (ormultiplication)𝑚 : CC ⇒ C
that can be expressed in concrete terms as follows. Let𝑈 = {Φ} ⊆ CCMBP be a finitely generated

A Language for QuantifyingQuantum Network Behavior 13

convex set of subdistributions over CMBP with generators Φ ∈ DCMBP. For Φ : CMBP → [0, 1]
represented as probability assignments with supp(Φ) = {𝐶 | Φ(𝐶) ≠ 0 },𝑚(𝑈) ∈ CMBP is defined:

𝑚(𝑈) =
⋃
Φ∈𝑈

{
∑︁

𝐶∈suppΦ
Φ(𝐶) · 𝜇 | 𝜇 ∈ 𝐶 }

More concretely,𝑚(𝑈) = ∪Φ∈𝑈WMS(Φ), where the weighted Minkowski sum of Φ =
∑𝑛

𝑖=1
𝑝𝑖 ·𝐶𝑖 is:

WMS(
𝑛∑︁
𝑖=1

𝑝𝑖 ·𝐶𝑖) = {
𝑛∑︁
𝑖=1

𝑝𝑖 ·𝜇𝑖 | 𝜇𝑖 ∈ 𝐶𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 }

The following example illustrates how convex sets of subdistributions are fitting for quantitative

reasoning about quantum network protocols, in particular to analyze protocol executions.

Example 4.1. We consider concrete distributions 𝜇0 = 𝛿∅, 𝜇1 = 𝛿{{𝐴∼𝐵}}, 𝜇2 = 𝛿{{𝐴∼𝐶,𝐵∼𝐶 }} and
subdistributions 𝜇′ = 0.5 ·𝜇0 + 0.1 ·𝜇1, 𝜇

′′ = 0.5 ·𝜇0 + 0.2 ·𝜇1 + 0.2 ·𝜇2 in DMBP to illustrate the

above definitions. Figure 8 represents the convex sets 𝐶1 = conv({𝜇0, 𝜇
′}), 𝐶2 = conv({𝜇0, 𝜇2, 𝜇

′′})
and their Minkowski sum WMS(0.7 ·𝐶1 + 0.3 ·𝐶2) (in orange, blue and green, respectively). If

we interpret the subdistributions in the Minkowski sum as possible protocol outputs, then the

probability of outputting ∅ is on the interval [0.35, 1], and similarly [0, 0.13] and [0, 0.3] for the
other two multisets of Bell pairs {{𝐴∼𝐵}} and {{𝐴∼𝐶, 𝐵∼𝐶}}.

𝜇′•

•𝛿{{𝐴∼𝐵}}

• 𝛿{{𝐴∼𝐶,𝐵∼𝐶 }}

𝜇′′•
•𝛿∅

Fig. 8. Minkowski sum.

𝐶1 ={
𝑞1 ·𝜇0 + (1−𝑞1) ·𝜇′ | 𝑞1 ∈ [0, 1]

}
={

(0.5+0.5𝑞1) ·∅ + (0.1−0.1𝑞1) ·{{𝐴∼𝐵}} | 𝑞1 ∈ [0, 1]
}

𝐶2 ={
𝑞2 ·𝜇0 + 𝑞′2 ·𝜇2 + (1−𝑞2−𝑞′2) ·𝜇′′ | 𝑞2, 𝑞

′
2
, 1−𝑞2−𝑞′2 ∈ [0, 1]

}
=

0.5(1−𝑞2+𝑞′2) ·∅ +
0.2(1−𝑞2−𝑞′2) ·{{𝐴∼𝐵}} +

(0.2−0.2𝑞2+0.8𝑞′
2
) ·{{𝐴∼𝐶, 𝐵∼𝐶}}

���� 𝑞2, 𝑞
′
2
, 1−𝑞2−𝑞′2 ∈ [0, 1]


WMS(0.7·𝐶1 + 0.3·𝐶2) ={

0.7(𝑞1 ·𝜇0 + (1−𝑞1) ·𝜇′) +
0.3(𝑞2 ·𝜇0 + 𝑞′2 ·𝜇2 + (1−𝑞2−𝑞′2) ·𝜇′′)

���� 𝑞1, 𝑞2, 𝑞
′
2
,

1−𝑞2−𝑞′2
∈ [0, 1]

}
The convex set WMS(0.7·𝐶1 + 0.3·𝐶2) has six generators, from which we can now read the possible

output multisets and with what probabilities they occur:

conv ({1·𝜇0, 0.7·𝜇0 + 0.3·𝜇2, 0.7·𝜇0 + 0.3·𝜇′′, 0.7·𝜇′ + 0.3·𝜇0, 0.7·𝜇′ + 0.3·𝜇2, 0.7·𝜇′ + 0.3·𝜇′′}) =
conv ({1·∅, 0.7·∅ + 0.3·{{𝐴∼𝐶, 𝐵∼𝐶}}, 0.85·∅ + 0.06·{{𝐴∼𝐵}} + 0.06·{{𝐴∼𝐶, 𝐵∼𝐶}},

0.65·∅ + 0.07·{{𝐴∼𝐵}}, 0.35·∅ + 0.07·{{𝐴∼𝐵}} + 0.3·{{𝐴∼𝐶, 𝐵∼𝐶}},
0.5·∅ + 0.13·{{𝐴∼𝐵}} + 0.06·{{𝐴∼𝐶, 𝐵∼𝐶}}})

Preliminaries. When executed, basic actions behave as functions MBP → DMBP that take

network states as inputs and return distributions:

𝑟 ⊲ (Σ 𝑝 ·𝑜) : 𝑎 ↦→
{
Σ 𝑝 · (𝑜 ⊎ 𝑎\𝑟) if 𝑟 ⊆ 𝑎 𝑎 otherwise

Observe that action behavior is conditioned by the test 𝑟 ⊆ 𝑎 checking for the presence (or absence)

of Bell pairs required by the action. When 𝑟 ⊆ 𝑎 the action outputs 𝑜 ⊎ 𝑎\𝑟 with probability 𝑝 , and

when 𝑟 ⊈ 𝑎 it passes on input 𝑎. Thus, we break basic actions into two mutually exclusive atomic

components which we write as [1]𝑟 ▶ (Σ 𝑝·𝑜) and [𝑟]∅ ▶ ∅, where tests [1] and [𝑟] are atomically

tied to actions, and respectively represent no test and the absence of Bell pairs (i.e., on input 𝑎 check

14 A. Buckley et al.

Atomic actions
Tests 𝑇 ∋ 𝑡, 𝑡 ′ ::= 1 no test

| 𝑏 multiset absence
| 𝑡 ∧ 𝑡 ′ conjunction
| 𝑡 ∨ 𝑡 ′ disjunction
| 𝑡 ⊎ 𝑏 multiset union

Atomic actions Π ∋ 𝜋 ::= [𝑡]𝑟 ▶ (Σ 𝑝 ·𝑜)
Test semantics

⟨|𝑡 |⟩ ∈ M(BP) → { ⊤,⊥ }
⟨|1|⟩𝑎 ≜ ⊤ ⟨|𝑡 ⊎ 𝑏 |⟩𝑎 ≜ (⟨|𝑡 |⟩𝑎 \ 𝑏 ∧ 𝑏 ⊆ 𝑎) ∨ ⟨|𝑏 |⟩𝑎
⟨|𝑏 |⟩𝑎 ≜ 𝑏 ⊈ 𝑎 ⟨|𝑡 □ 𝑡 ′ |⟩𝑎 ≜ ⟨|𝑡 |⟩𝑎 □ ⟨|𝑡 ′ |⟩𝑎, with □ is either ∧ or ∨

Composition rules
Atomic actions 𝜋 = [𝑡]𝑟 ▶ (Σ 𝑝 ·𝑜) and 𝜋 ′ = [𝑡 ′]𝑟 ′ ▶ (Σ 𝑝′·𝑜 ′) are composed by the following rules:

𝜋 ◦𝜋 ′ ≡ [𝑡 ∧ (𝑡 ′ ⊎ 𝑟)]𝑟 ▶ (Σ 𝑝𝑝′·𝑜) if 𝑟 = 𝑟 ⊎ 𝑟 ′ and 𝑜 = 𝑜 ⊎ 𝑜 ′ PNet-Ord

𝜋 ∥ 𝜋 ′ ≡ [(𝑡 ⊎ 𝑟 ′) ∧ (𝑡 ′ ⊎ 𝑟)]𝑟 ▶ (Σ 𝑝𝑝′·𝑜) if 𝑟 = 𝑟 ⊎ 𝑟 ′ and 𝑜 = 𝑜 ⊎ 𝑜 ′ PNet-Prl

Fig. 9. Syntax and semantics of PBKAT tests used in the composition of atomic actions. Parallel and ordered

composition of 𝜋, 𝜋 ′ ∈ Π yields new atomic actions 𝜋 ∥ 𝜋 ′ and 𝜋 ◦𝜋 ′.

for 𝑟 ⊈ 𝑎, the absence of Bell pairs 𝑟 in 𝑎). In general, we define atomic action [𝑡]𝑟 ▶ (Σ 𝑝 ·𝑜) as a
map that on input 𝑎 outputs distribution Σ 𝑝 · (𝑜 ⊎𝑎\𝑟) if both, 𝑟 ⊆ 𝑎 and test 𝑡 (checking absence of

Bell pairs in 𝑎) succeed, otherwise it aborts. Figure 9 shows the syntax and semantics of tests, and

the rules PNet-Ord and PNet-Prl for composing atomic actions. A simple calculation shows that

for 𝜋, 𝜋 ′ ∈ Π the outputs of parallel and ordered composition 𝜋 ∥ 𝜋 ′
and 𝜋 ◦𝜋 ′

are distributions,

thus they are indeed atomic actions. In the special case when 𝑝 = 1 we obtain (deterministic) atomic

actions equivalent to those in BellKAT.

Abstract language model. A guarded string 𝑎0𝜋1𝑎1 · · · 𝜋𝑛𝑎𝑛 is an element of the regular setMBP ;

(Π ; MBP)∗. Intuitively, a non-empty string is a trace of a program, where 𝑎𝑖 ∈ MBP describe the

network’s state at the end of round 𝑖 , starting with the initial state 𝑎0, and 𝜋𝑖 ∈ Π represent the

transitions triggered between the states. Guarded strings compose via fusion product ⋄ defined as,

𝑎0𝜋1𝑎1 . . . 𝜋𝑛𝑎𝑛 ⋄ 𝑎′0𝜋 ′
1
𝑎′

1
. . . 𝜋 ′

𝑛′𝑎
′
𝑛′ =

{
𝑎0𝜋1𝑎1 . . . 𝜋𝑛𝑎𝑛𝜋

′
1
𝑎′

1
. . . 𝜋 ′

𝑛′𝑎
′
𝑛′ if 𝑎𝑛 = 𝑎′

0

undefined otherwise

and layer-by-layer ordered composition and layer-by-layer parallel composition, defined respectively

by the rules (where we assume without loss of generality 𝑛 ≤ 𝑛′):

𝑎0𝜋1𝑎1 . . . 𝜋𝑛𝑎𝑛 ◦𝑎′
0
𝜋 ′

1
𝑎′

1
. . . 𝜋 ′

𝑛′𝑎
′
𝑛′ =

 𝑎0 (𝜋1 ◦𝜋 ′
1
)𝑎1 . . . (𝜋𝑛 ◦𝜋 ′

𝑛)𝑎𝑛𝜋 ′
𝑛+1

𝑎′𝑛+1
. . . 𝜋 ′

𝑛′𝑎
′
𝑛′

if 𝑎𝑖=𝑎
′
𝑖

∀ 0≤𝑖≤𝑛

undefined
otherwise

𝑎0𝜋1𝑎1 . . . 𝜋𝑛𝑎𝑛 ∥ 𝑎′0𝜋 ′
1
𝑎′

1
. . . 𝜋 ′

𝑛′𝑎
′
𝑛′ =

 𝑎0 (𝜋1 ∥ 𝜋 ′
1
)𝑎1 . . . (𝜋𝑛 ∥ 𝜋 ′

𝑛)𝑎𝑛𝜋 ′
𝑛+1

𝑎′𝑛+1
. . . 𝜋 ′

𝑛′𝑎
′
𝑛′

if 𝑎𝑖=𝑎
′
𝑖

∀ 0≤𝑖≤𝑛

undefined
otherwise

where 𝜋𝑖 ◦𝜋 ′
𝑖 and 𝜋𝑖 ∥ 𝜋 ′

𝑖 are atomic actions obtained by the rules PNet-Ord and PNet-Prl above.

In order to account for nondeterminism that may arise from combining protocols in parallel, we

need to “enlarge” the strings to appropriately capture all nondeterministic choices; we achieve this

A Language for QuantifyingQuantum Network Behavior 15

by using the powerset monad P. The advantage of dividing PBKAT protocols into rounds is that

all nondeterminism is confined within single rounds.

A guarded string of sets is an element of the set PMBP ; (PΠ ; PMBP)∗, denoted GSS. Elements

𝑤 = 𝑆0Ω1𝑆1 · · ·Ω𝑛𝑆𝑛 ∈ GSS and𝑤 ′ = 𝑆 ′
0
Ω′

1
𝑆 ′

1
. . . Ω′

𝑛′𝑆
′
𝑛′ in GSS compose via fusion product,

𝑤 ⋄𝑤 ′ =

{
𝑆0Ω1𝑆1 . . . Ω𝑛 (𝑆𝑛∩𝑆 ′0)Ω′

1
𝑆 ′

1
. . . Ω′

𝑛′𝑆
′
𝑛′ if 𝑆𝑛∩𝑆 ′0 ≠ ∅

undefined otherwise

and layer-by-layer ordered composition and layer-by-layer parallel composition (assuming 𝑛 ≤ 𝑛′),

𝑤 ◦𝑤 ′ =

 (𝑆0∩𝑆 ′0) (Ω1 ◦Ω′
1
) (𝑆1∩𝑆 ′1) . . . (Ω𝑛 ◦Ω′

𝑛) (𝑆𝑛∩𝑆 ′𝑛)Ω′
𝑛+1

𝑆 ′𝑛+1
. . . Ω′

𝑛′𝑆
′
𝑛′

if 𝑆𝑖∩𝑆 ′𝑖≠∅
∀ 0≤𝑖≤𝑛

undefined otherwise

𝑤 ∥ 𝑤 ′ =

 (𝑆0∩𝑆 ′0) (Ω1 ∥ Ω′
1
) (𝑆1∩𝑆 ′1) . . . (Ω𝑛 ∥ Ω′

𝑛) (𝑆𝑛∩𝑆 ′𝑛)Ω′
𝑛+1

𝑆 ′𝑛+1
. . . Ω′

𝑛′𝑆
′
𝑛′

if 𝑆𝑖∩𝑆 ′𝑖≠∅
∀ 0≤𝑖≤𝑛

undefined otherwise

where Ω𝑖 ◦Ω′
𝑖 = { 𝜋 ◦𝜋 ′ | 𝜋 ∈ Ω, 𝜋 ′ ∈ Ω′ } and Ω𝑖 ∥ Ω′

𝑖 = { 𝜋 ∥ 𝜋 ′ | 𝜋 ∈ Ω, 𝜋 ′ ∈ Ω′ } in which

atomic actions 𝜋 ◦𝜋 ′
and 𝜋 ∥ 𝜋 ′

are composed by the rules PNet-Ord and PNet-Prl.

We can lift the fusion product of guarded strings of sets to languages. For 𝐿, 𝐿′ ⊆ GSS we set:

𝐿 ⋄ 𝐿′ = {𝑤 ⋄𝑤 ′ | 𝑤 ∈ 𝐿,𝑤 ′ ∈ 𝐿′}
We define the 𝑛-th power of 𝐿 inductively, as 𝐿0 = MBP and 𝐿𝑛+1 = 𝐿𝑛 ⋄𝐿. Moreover, for 𝑆 ⊆ MBP

we introduce shorthand notation for 𝑆 = M(BP)\𝑆 and 𝑆 ⋄ 𝐿 = { 𝑆 } ⋄ 𝐿, and define:

𝐿 +𝑆 𝐿′ = (𝑆 ⋄ 𝐿) ∪ (𝑆 ⋄ 𝐿′) and 𝐿 (𝑆) =
⋃
𝑛≥0

(𝑆 ⋄ 𝐿)𝑛 ⋄ 𝑆

Similarly, we lift layer-by-layer ordered and parallel composition to languages:

𝐿 ◦𝐿′ = {𝑤 ◦𝑤 ′ | 𝑤 ∈ 𝐿,𝑤 ′ ∈ 𝐿′} and 𝐿 ∥ 𝐿′ = {𝑤 ∥ 𝑤 ′ | 𝑤 ∈ 𝐿,𝑤 ′ ∈ 𝐿′}
Using the notation introduced above, we next define how PBKAT expressions are interpreted as

languages of guarded strings of sets via the semantic map 𝐼 (−) : Exp → 2
PMBP;(PΠ;PMBP)∗

. Recall

that every basic action 𝑟 ⊲ (Σ 𝑝 ·𝑜) is composed of two atomic actions [1]𝑟 ▶ (Σ 𝑝 ·𝑜) and [𝑟]∅ ▶ ∅
conditioned on the presence and absence of required Bell pairs, respectively. A guard 𝛼 ∈ BExp is

by definition a predicate over MBP, which can be thought of as a set of multisets that satisfy the

expression. Formally, we define sat(𝛼) ⊆ MBP and the semantic map 𝐼 in the following way:

𝐼 (𝜋) = {MBP { 𝜋 }MBP }
sat(0) = ∅ 𝐼 (𝛼) = { sat(𝛼) }
sat(1) = MBP 𝐼 (𝑟 ⊲ (Σ 𝑝 ·𝑜)) = {MBP { [1]𝑟 ▶ (Σ 𝑝 ·𝑜), [𝑟]∅ ▶ ∅ }MBP }
sat(𝑎) = { 𝑎 } for 𝑎 ∈ MBP 𝐼 (𝑒 ; 𝑓) = 𝐼 (𝑒) ⋄ 𝐼 (𝑓)

sat(𝛼 ∨ 𝛽) = sat(𝛼) ∪ sat(𝛽) 𝐼 (𝑒 +𝛼 𝑓) = 𝐼 (𝑒) +sat(𝛼) 𝐼 (𝑓)
sat(𝛼 ∧ 𝛽) = sat(𝛼) ∩ sat(𝛽) 𝐼 (𝑒 (𝛼)) = 𝐼 (𝑒) (sat(𝛼))

sat(𝛼) = MBP \ sat(𝛼) 𝐼 (𝑒 ◦ 𝑓) = 𝐼 (𝑒) ◦ 𝐼 (𝑓)
𝐼 (𝑒 ∥ 𝑓) = 𝐼 (𝑒) ∥ 𝐼 (𝑓)

Remark 4.1. Despite having similar name, the abstract semantics 𝐼 (−) of PBKAT is not closely

related to the abstract interpretation of probabilistic semantics by Monniaux [2000]. The key

difference with that line of work (where a state is a probability distribution) is that PBKAT’s

abstract semantics deals with uninterpreted (abstract) actions, which are not probabilistic.

16 A. Buckley et al.

Probabilistic interpretation of executions. Parallel composition of expressions induces nondeter-

minism even for the guarded fragment of PBKAT. A realistic interpretation modeling protocol

execution thus needs to combine probabilistic and nondeterministic (or possibilistic) choice. Con-

sider the following scenario: Given an input network state, the scheduler nondeterministically

chooses which of the actions that require the same Bell pairs will execute. We wish to keep track

of all scheduler’s possibilities of how to map inputs to distributions over outputs.

To make definitions compatible with concrete network constraints, consider a network on nodes

𝐴1, . . . , 𝐴𝑙 with the upper bound𝑚𝑖 𝑗 on the number of Bell pairs𝐴𝑖∼𝐴 𝑗 . For an 𝑎 ∈ MBP containing

𝑛𝑖 𝑗 Bell pairs 𝐴𝑖∼𝐴 𝑗 we define, ⌊𝑎⌋ = {{min(𝑛𝑖 𝑗 ,𝑚𝑖 𝑗) ×𝐴𝑖∼𝐴 𝑗 }}, that can be thought of as replacing

Bell pairs 𝐴𝑖∼𝐴 𝑗 with refreshed ones of the same kind once the storage capacity𝑚𝑖 𝑗 is reached.

For an atomic action 𝜋 = [𝑡]𝑟 ▶ (Σ 𝑝 ·𝑜) we define the execution map exe(𝜋) : MBP → DMBP:

exe(𝜋) (𝑎) =
{
Σ 𝑝 · ⌊𝑜 ⊎ 𝑎\𝑟⌋ if 𝑟 ⊆ 𝑎 and ⟨|𝑡 |⟩𝑎 = ⊤

0 else

The above definition formalizes the behavior of an atomic action that, given that its tests 𝑟 ⊆ 𝑎 and

𝑡 succeed on input 𝑎, it outputs multiset ⌊𝑜 ⊎𝑎\𝑟⌋ with probability 𝑝 , i.e., exe(𝜋) (𝑎) (⌊𝑜 ⊎𝑎\𝑟⌋) = 𝑝 .

For a PBKAT expression 𝑒 ∈ Exp, the elements of its abstract semantics 𝐼 (𝑒) ⊆ GSS are enlarged

guarded strings, as defined in the previous paragraph.

The map ⟦−⟧ex : GSS → MBP → CMBP is defined recursively for 𝑎0 ∈ MBP and𝑤 ∈ GSS:

⟦𝑆⟧ex (𝑎) =
{
{ 𝛿𝑎 } if 𝑎 ∈ 𝑆

∅ else

⟦𝑤⟧ex (𝑎0) =
{ ⋃

𝜋1∈Ω1

WMS

(∑
𝑎1∈𝑆1

exe(𝜋1) (𝑎0) (𝑎1) · ⟦𝑆1Ω2𝑆2 · · ·Ω𝑛𝑆𝑛⟧ex (𝑎1)
)

if 𝑎0 ∈ 𝑆0

∅ else

where the weighted Minkowski sum of a sub-distribution

∑𝑘
𝑖=1

𝑝𝑖 ·𝐶𝑖 ∈ DCMBP is defined as:

WMS (
𝑘∑︁
𝑖=1

𝑝𝑖 ·𝐶𝑖) =
{

∅ if all 𝐶𝑖 = ∅
{∑𝑘

𝑖=1
𝑝𝑖 ·𝜇𝑖 | 𝜇𝑖 ∈ 𝐶𝑖 ≠ ∅ for all 1 ≤ 𝑖 ≤ 𝑘 } else

Remark 4.2. In the above definitions all sets are considered as convex closures of its generators.

These definitions prevent sets of sub-distributions that contain the zero sub-distribution, e.g.,

conv{0, 𝛿1, 𝛿2}. Alternatively, we could define the convex closure of a set of subdistributions by

only taking into account subdistributions with nonzero support.

Next, we lift ⟦−⟧ex to languages via another Minkowski summation. For 𝐿 ⊆ GSS we define:

⟦𝐿⟧ex (𝑎) = WMS (
∑︁
𝑤∈𝐿

1·⟦𝑤⟧ex (𝑎)) = {
∑︁
𝑤∈𝐿

𝛿 | 𝛿 ∈ ⟦𝑤⟧ex (𝑎) ≠ 0 }

Finally, we define ⟦−⟧ : Exp → (MBP → CMBP) as composition ⟦𝑒⟧ = ⟦𝐼 (𝑒)⟧ex.
The next example shows how PBKAT semantics faithfully models end-to-end behaviors of

protocol executions while taking network constrains into consideration. We will compute the ⟦−⟧
semantics of a variant of protocol (a) by unfolding the above definitions to illustrate the inner

workings of our approach (whose implementation will be described in Section 6).

Example 4.2. Assume that the network in Figure 1 has the capacity of handling at most two

Bell pairs 𝐶∼𝐶 and one of each 𝐴∼𝐶 and 𝐵∼𝐶 . Recall the first two rounds of protocol (a) from our

running example, which attempt to create two Bell pairs 𝐶∼𝐶 and transmit them to 𝐴∼𝐶 and 𝐵∼𝐶 .
Since basic actions are likely to fail (and therefore output insufficiently Bell pairs required by the

the actions in subsequent rounds), it is sensible to introduce guards as additional checks ensuring

A Language for QuantifyingQuantum Network Behavior 17

that actions are not unnecessarily enabled unless the required Bell pairs are available. To this end

we consider protocol (a2), specified with conditionals as (𝑒 ∥ 𝑓) ; sw⟨𝐴∼𝐵 @𝐶⟩3/5 for,

𝑒 =
(
cr⟨𝐶⟩2/3 +𝛼 tr⟨𝐶→𝐴∼𝐶⟩4/5

)
; tr⟨𝐶→𝐴∼𝐶⟩4/5 and 𝑓 = cr⟨𝐶⟩2/3 ;

(
cr⟨𝐶⟩2/3 +𝛼 tr⟨𝐶→𝐵∼𝐶⟩1/2

)
where guard 𝛼 checks if there is no𝐶∼𝐶 in the network. We can think of 𝑒 and 𝑓 as being specified

by two practitioners who use slightly different strategies to create Bell pair𝐶∼𝐶 in order to transmit

it to 𝐴∼𝐶 and 𝐵∼𝐶 , respectively: 𝑒 in the first round creates a Bell pair 𝐶∼𝐶 if there is no 𝐶∼𝐶 yet

available, otherwise it immediately transmits it to 𝐴∼𝐶 , and in the second round 𝑒 simply calls

tr⟨𝐶→𝐴∼𝐶⟩. By contrast, 𝑓 always creates a Bell pair 𝐶∼𝐶 in the first round, and in the second

round 𝑓 either creates 𝐶∼𝐶 or transmits it to 𝐵∼𝐶 , depending on the availability of 𝐶∼𝐶 from the

first round. Equivalently, protocols 𝑒 and 𝑓 are specified as:

𝑒 =
(
∅ ⊲2/3 {{𝐶∼𝐶}} +𝛼 {{𝐶∼𝐶}} ⊲4/5 {{𝐴∼𝐶}}

)
; {{𝐶∼𝐶}} ⊲4/5 {{𝐴∼𝐶}}

𝑓 = ∅ ⊲2/3 {{𝐶∼𝐶}} ;

(
∅ ⊲2/3 {{𝐶∼𝐶}} +𝛼 {{𝐶∼𝐶}} ⊲1/2 {{𝐵∼𝐶}}

)
We abbreviate multisets {{𝑖 ×𝐶∼𝐶, 𝑗 ×𝐴∼𝐶, 𝑘 × 𝐵∼𝐶}} by 𝑎𝑖 𝑗𝑘 , and the atomic actions in 𝑒, 𝑓 by,

𝜋𝐴 = [1]{{𝐶∼𝐶}} ▶
(

4

5
·{{𝐴∼𝐶}} + 1

5
·∅

)
𝜋𝐶 = [1]∅ ▶

(
2

3
·{{𝐶∼𝐶}} + 1

3
·∅

)
𝜋𝐵 = [1]{{𝐶∼𝐶}} ▶

(
1

2
·{{𝐵∼𝐶}} + 1

2
·∅

)
𝜋𝑆 = [𝐶∼𝐶]∅ ▶ ∅

and use shorthand𝛼, 𝛼, 1 for sat(𝛼) = { 𝑎0𝑗𝑘 | 𝑗, 𝑘 ∈ {0, 1} }, sat(𝛼) = { 𝑎𝑖 𝑗𝑘 | 𝑖 ∈ {1, 2}, 𝑗, 𝑘 ∈ {0, 1} },
sat(1) = MBP = { 𝑎𝑖 𝑗𝑘 | 𝑖 ∈ {0, 1, 2}, 𝑗, 𝑘 ∈ {0, 1} }, respectively. Then, abstract semantics are:

𝐼 (𝑒) =
{

𝛼 { 𝜋𝐶 } 1 { 𝜋𝐴, 𝜋𝑆 } 1,

𝛼 { 𝜋𝐴, 𝜋𝑆 } 1 { 𝜋𝐴, 𝜋𝑆 } 1

}
𝐼 (𝑓) =

{
1 { 𝜋𝐶 } 𝛼 { 𝜋𝐶 } 1,

1 { 𝜋𝐶 } 𝛼 { 𝜋𝐵, 𝜋𝑆 } 1

}
𝐼 (𝑒 ∥ 𝑓) =


𝛼 { 𝜋𝐶 ∥ 𝜋𝐶 } 𝛼 { 𝜋𝐴 ∥ 𝜋𝐶 , 𝜋𝑆 ∥ 𝜋𝐶 } 1

𝛼 { 𝜋𝐶 ∥ 𝜋𝐶 } 𝛼 { 𝜋𝐴 ∥ 𝜋𝐵, 𝜋𝐴 ∥ 𝜋𝑆 , 𝜋𝐵 ∥ 𝜋𝑆 , 𝜋𝑆 ∥ 𝜋𝑆 } 1,

𝛼 { 𝜋𝐴 ∥ 𝜋𝐶 , 𝜋𝑆 ∥ 𝜋𝐶 } 𝛼 { 𝜋𝐴 ∥ 𝜋𝐶 , 𝜋𝑆 ∥ 𝜋𝐶 } 1,

𝛼 { 𝜋𝐴 ∥ 𝜋𝐶 , 𝜋𝑆 ∥ 𝜋𝐶 } 𝛼 { 𝜋𝐴 ∥ 𝜋𝐵, 𝜋𝐴 ∥ 𝜋𝑆 , 𝜋𝐵 ∥ 𝜋𝑆 , 𝜋𝑆 ∥ 𝜋𝑆 } 1


where, by rule PNet-Prl, parallel composition of two atomic actions yields a new atomic action:

𝜋𝐴 ∥ 𝜋𝐶 = [1]{{𝐶∼𝐶}} ▶
(

8

15
·{{𝐴∼𝐶,𝐶∼𝐶}} + 4

15
·{{𝐴∼𝐶}} + 2

15
·{{𝐶∼𝐶}} + 1

15
·∅

)
𝜋𝑆 ∥ 𝜋𝐶 = [𝐶∼𝐶]∅ ▶

(
2

3
·{{𝐶∼𝐶}} + 1

3
·∅

)
𝜋𝐴 ∥ 𝜋𝐵 = [1]{{𝐶∼𝐶,𝐶∼𝐶}} ▶

(
4

10
·{{𝐴∼𝐶, 𝐵∼𝐶}} + 4

10
·{{𝐴∼𝐶}} + 1

10
·{{𝐵∼𝐶}} + 1

10
·∅

)
𝜋𝐴 ∥ 𝜋𝑆 = [𝐶∼𝐶,𝐶∼𝐶]{{𝐶∼𝐶}} ▶

(
4

5
·{{𝐴∼𝐶}} + 1

5
·∅

)
𝜋𝐵 ∥ 𝜋𝑆 = [𝐶∼𝐶,𝐶∼𝐶]{{𝐶∼𝐶}} ▶

(
1

2
·{{𝐵∼𝐶}} + 1

2
·∅

)
𝜋𝑆 ∥ 𝜋𝑆 = [𝐶∼𝐶]∅ ▶ ∅
𝜋𝐶 ∥ 𝜋𝐶 = [1]∅ ▶

(
4

9
·{{𝐶∼𝐶,𝐶∼𝐶}} + 4

9
·{{𝐶∼𝐶}} + 1

9
·∅

)
Below, we visualize the execution traces of 𝑒 ∥ 𝑓 , given that at the start there are no Bell pairs in

the network, i.e., we take ∅ = 𝑎000 ∈ MBP as the input. Note that two strings from 𝐼 (𝑒 ∥ 𝑓) execute,

𝑎000

𝜋𝐶 ∥ 𝜋𝐶−−−−−−→
{

1

9
·𝑎000

𝜋𝑆 ∥ 𝜋𝐶−−−−−−−−−−→
{

2

3
·𝑎100 + 1

3
·𝑎000

𝑎000

𝜋𝐶 ∥ 𝜋𝐶−−−−−−→


4

9
·𝑎200

𝜋𝐴 ∥ 𝜋𝐵−−−−−−−−−−−→
{

4

10
·𝑎011 + 4

10
·𝑎010 + 1

10
·𝑎001 + 1

10
·𝑎000

4

9
·𝑎100⟨

𝜋𝐴 ∥ 𝜋𝑆−−−−−−→
{

4

5
·𝑎010 + 1

5
·𝑎000

−−−−−−→
𝜋𝐵 ∥ 𝜋𝑆

{
1

2
·𝑎001 + 1

2
·𝑎000

18 A. Buckley et al.

skip 1□ 𝑒 ≡ 𝑒 □ 1 ≡ 𝑒 commut. 𝑒 ∥ 𝑓 ≡ 𝑓 ∥ 𝑒
abort 0□ 𝑒 ≡ 𝑒 □ 0 ≡ 0 synchrony (ℎ ; 𝑒) ∥ (𝑘 ; 𝑓) ≡ (ℎ ∥ 𝑘) ; (𝑒 ∥ 𝑓)
assoc. (𝑒 □ 𝑓) □𝑔 ≡ 𝑒 □ (𝑓 □𝑔) (ℎ ; 𝑒) ◦ (𝑘 ; 𝑓) ≡ (ℎ ◦𝑘) ; (𝑒 ◦ 𝑓)
guards 𝑒 +𝛽 𝑒 ≡ 𝑒 right distrib. (𝑒 +𝛽 𝑓) □𝑔 ≡ (𝑒 □𝑔) +𝛽 (𝑓 □𝑔)

𝑒 +𝛽 𝑓 ≡ 𝑓 + ¯𝛽 𝑒 loops 𝑒 (𝛽) ≡ 𝑒 ; 𝑒 (𝛽) +𝛽 1

𝑒 +𝛽 𝑓 ≡ 𝛽 ; 𝑒 +𝛽 𝑓 (𝑒 +𝛼 1) (𝛽) ≡ (𝛼 ; 𝑒) (𝛽)
(𝑒 +𝛼 𝑓) +𝛽 𝑔 ≡ 𝑒 +𝛼∧𝛽 (𝑓 +𝛽 𝑔)

Fig. 10. PBKAT rules. Symbol □ stands for any operator in { ◦ , ∥ , ;}, where ℎ and 𝑘 combine basic actions

without the ; operator. For ; only the right distributivity rule holds, whereas ◦ and ∥ are distributive from both

sides, since guards attach to the lowest round. We also include PNet-Ord and PNet-Prl rules for combining

atomic actions as part of PBKAT rules.

where different colors indicate the nondeterministic choice between 𝜋𝐴 ∥ 𝜋𝑆 and 𝜋𝐵 ∥ 𝜋𝑆 that require
the same Bell pairs. By definition of ⟦−⟧ex, we sum the subdistributions for each choice, yielding:

⟦𝑒 ∥ 𝑓 ⟧(𝑎000) = conv

({
23

135
·𝑎000 + 6

135
·𝑎001 + 72

135
·𝑎010 + 24

135
·𝑎011 + 10

135
·𝑎100,

41

135
·𝑎000 + 36

135
·𝑎001 + 24

135
·𝑎010 + 24

135
·𝑎011 + 10

135
·𝑎100

})
From this we can, for example, read that protocol 𝑒 ∥ 𝑓 on input ∅ always outputs {{𝐴∼𝐶, 𝐵∼𝐶}}
with probability

24

135
, and outputs ∅ with probability between

23

135
and

41

135
. Thus, after the swapping

sw⟨𝐴∼𝐵 @𝐶⟩3/5, protocol (a2) produces Bell pair 𝐴∼𝐵 with probability
8

75
.

4.3 Properties
In this section we present properties and prove correctness of PBKAT semantics, which will be

useful for reasoning about and modifying protocols with the purpose of optimization in Section 5.

Concurrent execution of basic actions. We prove that the semantics of basic actions is correct

with respect to the outcome distributions that we obtain by explicit combinatorial reasoning. In

Section 4.2, we showed that the semantics of basic actions correctly describe their execution. Now

consider concurrent composition of basic actions 𝑓 = 𝑟 ⊲ (Σ 𝑝 ·𝑜) and 𝑓 ′ = 𝑟 ′ ⊲ (Σ 𝑝′ ·𝑜 ′). In the

ordered composition 𝑓 ◦ 𝑓 ′ the priority is given to the first action, which is captured in,

𝐼 (𝑓 ◦ 𝑓 ′) = { [1]𝑟 ⊎ 𝑟 ′ ▶ (Σ 𝑝𝑝′·𝑜 ⊎ 𝑜 ′), [𝑟 ⊎ 𝑟 ′]𝑟 ▶ (Σ 𝑝 ·𝑜), [𝑟]𝑟 ′ ▶ (Σ 𝑝′ ·𝑜 ′), [𝑟 ∧ 𝑟 ′]∅ ▶ ∅ }
obtained by the rule PNet-Ord. Given an input 𝑎 ∈ MBP, exactly one of the following atomic

actions in 𝐼 (𝑓 ◦ 𝑓 ′) is executed (and the others abort), depending on which test succeeds: 𝑟 ⊎ 𝑟 ′ ⊆ 𝑎

when there are sufficient Bell pairs for both actions, (𝑟 ⊎ 𝑟 ′ ⊈ 𝑎) ∧ (𝑟 ⊆ 𝑎) if only 𝑓 gets enough

Bell pairs, (𝑟 ⊈ 𝑎) ∧ (𝑟 ′ ⊆ 𝑎) when 𝑓 ′ uses Bell pairs that 𝑓 does not require, or (𝑟 ⊈ 𝑎) ∧ (𝑟 ′ ⊈ 𝑎)
when neither action can be executed. On the other hand, parallel execution of basic actions yields:

𝐼 (𝑓 ∥ 𝑓 ′) = {[1]𝑟 ⊎ 𝑟 ′ ▶ (Σ 𝑝𝑝′·𝑜 ⊎ 𝑜 ′), [𝑟 ⊎ 𝑟 ′]𝑟 ▶ (Σ 𝑝 ·𝑜), [𝑟 ⊎ 𝑟 ′]𝑟 ′ ▶ (Σ 𝑝′ ·𝑜 ′), [𝑟 ∧ 𝑟 ′]∅ ▶ ∅}
evaluated by the rule PNet-Prl. For some inputs 𝑎 ∈ MBP, given that both actions require

same Bell pairs but there are only enough for one of them, both tests (𝑟 ⊎ 𝑟 ′ ⊈ 𝑎) ∧ (𝑟 ⊆ 𝑎)
and (𝑟 ⊎ 𝑟 ′ ⊈ 𝑎) ∧ (𝑟 ′ ⊆ 𝑎) succeed. Then one of the two corresponding actions is chosen

nondeterministically – we can think of this as the scheduler nondetermistically choosing an action.

Algebraic properties. The rules in Figure 10 for combining PBKAT expressions can be thought of

as guarded variants of SKA axioms. The theorems below show that the PBKAT rules (including

the PNet-Ord and PNet-Prl rules) are sound with respect to the PBKAT semantics and that the

semantics is well defined. A proof sketch of the theorems is in Appendix A.

A Language for QuantifyingQuantum Network Behavior 19

Formally, the next Theorem 4.1 states that every equivalence provable using the PBKAT rules

also holds in the denotational model, resulting in the same end-to-end behavior. This is, ⊢ 𝑒 ≡ 𝑓 ⇒
⟦𝑒⟧ = ⟦𝑓 ⟧, where ⊢ denotes provability in PBKAT and ⟦−⟧ is defined in Section 4.2. The key step

is to prove ⊢ 𝑒 ≡ 𝑓 ⇒ 𝐼 (𝑒) = 𝐼 (𝑓), i.e., the soundness of PBKAT rules with respect to the abstract

semantics (that builds a language model of guarded strings). Then, the theorem follows since ⟦−⟧
is defined by composing 𝐼 with the execution semantics ⟦−⟧ex.
Theorem 4.1. If protocol expressions 𝑒, 𝑓 ∈ Exp are equivalent under PBKAT rules, then their

denotational semantics coincide. This is, ⊢ 𝑒 ≡ 𝑓 ⇒ ⟦𝑒⟧ = ⟦𝑓 ⟧.
Furthermore, Theorem 4.2 shows that ⟦−⟧ gives probabilistic interpretation to the expressions.

Theorem 4.2. PBKAT semantics produces sets of well-defined subprobability kernels. This means
that if 𝑒 ∈ Exp and 𝑎 ∈ MBP, then ⟦𝑒⟧(𝑎) ∈ CMBP, i.e., ⟦𝑒⟧(𝑎) is a set of subdistributions.
Theorem 4.2 is due to an important property of the abstract semantics, which we define in the

next lemma (cf. the set of guarded strings in Example 4.2):

Lemma 4.1 (Determinacy property). The language 𝐼 (𝑒) ⊆ GSS corresponding to the PBKAT
expression 𝑒 satisfies the determinacy property, i.e., whenever strings𝑤,𝑤 ′ ∈ 𝐼 (𝑒) agree on their first 𝑛
sets of states 𝑆0, . . . , 𝑆𝑛−1, then they agree on their first 𝑛 sets of actions Ω1, . . . ,Ω𝑛 and 𝑆𝑛 ∩ 𝑆 ′𝑛 = ∅.
For protocols with no (unbounded) while loops the set of subdistributions is finitely generated.

As a consequence, we obtain a tool to reason about the equality of protocols w.r.t. ⟦−⟧ in Lemma 4.2.

For while-free protocols, the semantic equivalence of two protocols can always be decided by (i)

computing the (unique and finite) sets of extreme points (i.e., generators) for the respective convex

sets and (ii) checking that the computed sets of extreme points are equal.

Lemma 4.2. If protocol expressions 𝑒 and 𝑓 contain no while loops, then ⟦𝑒⟧ = ⟦𝑓 ⟧ is decidable.

Relation to BellKAT and (probabilistic) GKAT. Besides for allowing probabilistic actions, PBKAT’s
semantics differs in two crucial aspects from BellKAT, both aiming to address nondeterminism. The

first aspect is that PBKAT’s syntax has no operator for expressing nondeterministic choice. The

second aspect is that PBKAT’s strings of actions are guarded, where a guard filters the multisets of

Bell pairs and retains only those that satisfy the test. Conditionals and while loops in PBKAT use

guards to resolve the inherent nondeterminism in the union and iteration operators (denoted as +
and

★
in BellKAT). This way, the only nondeterminism in PBKAT arises from parallel composition

of actions within single rounds (see the discussion of nondeterminism in Section 3).

PBKAT rules in Figure 10 are closely related to the axiomatization of GKAT [Smolka et al. 2019a].

In addition to GKAT’s axioms, PBKAT has synchrony axioms describing the interaction between

the synchronous (parallel and ordered) compositions and the sequential composition, capturing the

intended lock-step behaviour. The only GKAT axiom not included in PBKAT is the fixpoint axiom.

(As we are not aiming for completeness, we decided to not include the fixpoint axiom, which would

require introducing the concept of the “empty word property”. This is in line with works BellKAT,

ProbNetKAT and McNetKAT, that all have sound but not complete axiomatization; cf. Section 2.)

Despite having similar name, there is a key difference with Probabilistic GKAT [Różowski et al.

2023], namely PBKAT does not have probabilistic choice (for probabilistic branching) – in this

sense, PBKAT’s semantics is closer to a specific probabilistic interpretation of the original GKAT.

5 Quantitative Analysis
This section makes use of the properties of PBKAT semantics and its explicit representation. Besides

enabling practical verification by checking semantic equivalences of protocols, PBKAT properties

enable quantitative analysis of protocol executions and consequently their optimization.

20 A. Buckley et al.

5.1 Protocol Optimization
Quantitative reasoning is particularly useful to analyze the effects of quantum network proto-

col executions through different branches of the execution traces, some of which may be quite

counterintuitive. Concretely, such analysis can be used for optimizing the scheduling of actions

within protocol rounds (e.g., as a way to control the power of an adversarial scheduler [Rand and

Zdancewic 2016]), or for resolving nondeterminism in the style of pGCL [McIver and Morgan 2005,

Chapter 1.8] or demonic outcome logic [Zilberstein et al. 2024].

To showcase protocol optimization, we incrementally build optimized versions of the entangle-

ment swap protocol from our running example.

Example 5.1. Consider the repeater swap protocol (a), running on the three-node network in

Figure 1, with the goal to generate end-to-end Bell pair𝐴∼𝐵. The protocol first creates two Bell pairs
𝐶∼𝐶 locally at node 𝐶 (acting as a source), then transmits one copy to 𝐴∼𝐶 and the other to 𝐵∼𝐶 ,
which are subsequently swapped at node 𝐶 (now acting as a repeater) to generate Bell pair 𝐴∼𝐵.

For simplicity, this example focuses on the transmit subprotocol and assumes the network is

constrained to handle at most two Bell pairs 𝐶∼𝐶 and one of each 𝐴∼𝐶 and 𝐵∼𝐶 . Below, we fix the
success probabilities of basic actions to cr⟨𝐶⟩0.9, tr⟨𝐶→𝐴∼𝐶⟩0.8 and tr⟨𝐶→𝐵∼𝐶⟩0.5, and build and

compare different protocols, aiming to generate 𝐴∼𝐶 and 𝐵∼𝐶 with the highest probabilities.

I. Consider protocols 𝑒 and 𝑓 that create 𝐶∼𝐶 and transmit it to 𝐴∼𝐶 and 𝐵∼𝐶 , respectively:
𝑒 = cr⟨𝐶⟩0.9 ; tr⟨𝐶→𝐴∼𝐶⟩0.8 ≜ ∅ ⊲0.9 {{𝐶∼𝐶}} ; {{𝐶∼𝐶}} ⊲0.8 {{𝐴∼𝐶}}
𝑓 = cr⟨𝐶⟩0.9 ; tr⟨𝐶→𝐵∼𝐶⟩0.5 ≜ ∅ ⊲0.9 {{𝐶∼𝐶}} ; {{𝐶∼𝐶}} ⊲0.5 {{𝐵∼𝐶}}

We wish to compare the semantic of protocols 𝑒 and 𝑓 running concurrently, namely ⟦𝑒 ∥ 𝑓 ⟧ and

⟦𝑒 ◦ 𝑓 ⟧ – the difference between them is that, when there is only one 𝐶∼𝐶 available, in 𝑒 ∥ 𝑓 there

are two possibilities where 𝐶∼𝐶 can be transmitted, either to 𝐴∼𝐶 or 𝐵∼𝐶 , and in 𝑒 ◦ 𝑓 protocol 𝑒

has priority over 𝑓 , thus𝐶∼𝐶 is transmitted to 𝐴∼𝐶 . Protocols 𝑒 ∥ 𝑓 and 𝑒 ◦ 𝑓 , given an empty input,

return distributions conv({𝜇1, 𝜇2}) and {𝜇1} respectively, where 𝜇1 and 𝜇2 correspond to whether

tr⟨𝐶→𝐴∼𝐶⟩0.8 or tr⟨𝐶→𝐵∼𝐶⟩0.5 is selected. Note that the probability of outcome {{𝐴∼𝐶, 𝐵∼𝐶}} is
independent of whether priority is given to 𝑒 or 𝑓 :

𝜇1 = 0.324 · {{𝐴∼𝐶, 𝐵∼𝐶}} + 0.468 · {{𝐴∼𝐶}} + 0.081 · {{𝐵∼𝐶}} + 0.127 · ∅
𝜇2 = 0.324 · {{𝐴∼𝐶, 𝐵∼𝐶}} + 0.324 · {{𝐴∼𝐶}} + 0.171 · {{𝐵∼𝐶}} + 0.181 · ∅

II. Next we increase the probability of generating𝐴∼𝐶 and 𝐵∼𝐶 by rerunning protocols 𝑒 ∥ 𝑓 and

𝑒 ◦ 𝑓 . The evaluation of the semantics of (𝑒 ∥ 𝑓) ; (𝑒 ∥ 𝑓) and (𝑒 ◦ 𝑓) ; (𝑒 ◦ 𝑓) on the empty input is,

⟦(𝑒 ∥ 𝑓) ; (𝑒 ∥ 𝑓)⟧(∅) = conv({𝜈1, 𝜈2, . . . 𝜈14}) and ⟦(𝑒 ◦ 𝑓) ; (𝑒 ◦ 𝑓)⟧(∅) = {𝜈1}
where in the convex set with 14 generators, e.g., respective distributions 𝜈2, 𝜈3 have max, min

probabilities of generating both Bell pairs, and 𝜈4 corresponds to the semantics of (𝑓 ◦ 𝑒) ; (𝑓 ◦ 𝑒):
𝜈1 = 0.61884 · {{𝐴∼𝐶, 𝐵∼𝐶}} + 0.337896 · {{𝐴∼𝐶}} + 0.027135 · {{𝐵∼𝐶}} + 0.016129 · ∅
𝜈2 = 0.678456 · {{𝐴∼𝐶, 𝐵∼𝐶}} + 0.248328 · {{𝐴∼𝐶}} + 0.050229 · {{𝐵∼𝐶}} + 0.022987 · ∅
𝜈3 = 0.607176 · {{𝐴∼𝐶, 𝐵∼𝐶}} + 0.319608 · {{𝐴∼𝐶}} + 0.050229 · {{𝐵∼𝐶}} + 0.022987 · ∅
𝜈4 = 0.653832 · {{𝐴∼𝐶, 𝐵∼𝐶}} + 0.222264 · {{𝐴∼𝐶}} + 0.091143 · {{𝐵∼𝐶}} + 0.032761 · ∅

The first protocol with unresolved nondeterminism may succeed with higher probability than the

second deterministic one. Surprisingly, the probability of the outcome {{𝐴∼𝐶, 𝐵∼𝐶}} is lower when
priority is given to 𝑒 as opposed to 𝑓 in both runs. This goes against the expectation that giving

priority to actions with the highest probability of success (𝑒 contains tr⟨𝐶→𝐴∼𝐶⟩0.8) should lead to

the most likely outcome. (Compare this with angelic choice as a way of resolving nondeterminism

A Language for QuantifyingQuantum Network Behavior 21

in [Morgan et al. 1996].) In our case, giving priority to actions with the lowest probability of success

(𝑓 with tr⟨𝐶→𝐵∼𝐶⟩0.5), proves to be more beneficial.

III.When protocols run in parallel, we use guards to control both protocols in a synchronized

manner. Protocol II can be improved by guarding the fourth round, so that priority is given to the

transmit that hasn’t yet succeeded. Let 𝑒′ and 𝑓 ′ concurrently create and transmit Bell pairs,

𝑒′=cr⟨𝐶⟩0.9 ; (tr⟨𝐶→𝐴∼𝐶⟩0.8+𝛼 tr⟨𝐶→𝐵∼𝐶⟩0.5) 𝑓 ′=cr⟨𝐶⟩0.9 ;

(
tr⟨𝐶→𝐵∼𝐶⟩0.5+𝛽 tr⟨𝐶→𝐴∼𝐶⟩0.8

)
where 𝛼 and 𝛽 check for the absence of 𝐴∼𝐶 and 𝐵∼𝐶 , respectively. This prevents 𝐶∼𝐶 from

being transmitted twice to the same neighbor. Figure 11 shows the execution semantics of 𝑒′ ∥ 𝑓 ′
for all the inputs that are relevant for iteration. By the same methods as before, we evaluate that

from input ∅, protocol 𝑒′ ∥ 𝑓 ′ returns {{𝐴∼𝐶, 𝐵∼𝐶}} with probabilities 0.324 after one iteration and

0.766228 after two; this outcome occurs regardless of which action is selected when only one 𝐶∼𝐶
is available and both transmits require it. Concretely, the output of two iterations is conv({𝜈 ′

1
, 𝜈 ′

2
}):

𝜈 ′
1
= 0.766228 · {{𝐴∼𝐶, 𝐵∼𝐶}} + 0.201006 · {{𝐴∼𝐶}} + 0.0166374 · {{𝐵∼𝐶}} + 0.016129 · ∅

𝜈 ′
2
= 0.766228 · {{𝐴∼𝐶, 𝐵∼𝐶}} + 0.156654 · {{𝐴∼𝐶}} + 0.0443574 · {{𝐵∼𝐶}} + 0.032761 · ∅

IV. In practice, most protocols are expressed as guarded iterations of subprotocols until the

requested Bell pairs are successfully generated. In what follows, we first specify a protocol that

repeatedly creates fresh copies of 𝐶∼𝐶 and transmits them to 𝐴∼𝐶 and 𝐵∼𝐶 until both transmits

succeed and then we evaluate its expected outputs. We define the protocol aswhile 𝜏 do (𝑒′ ∥ 𝑓 ′) ≜
(𝑒′ ∥ 𝑓 ′) (𝜏) , where 𝑒′ and 𝑓 ′ are as in III, and the guard 𝜏 = (0 ×𝐴∼𝐶) ∨ (0 × 𝐵∼𝐶) checks for the
absence of either 𝐴∼𝐶 or 𝐵∼𝐶 . For quantitative analysis of this protocol, it is most convenient to

represent the semantics of 𝑒′ ∥ 𝑓 ′ with stochastic matrices (as will be elaborated on in the next

section). Each row in a stochastic matrix represents the output distribution that a protocol returns

from a given input. The semantics of 𝑒′ ∥ 𝑓 ′ is represented by two matrices,
.181 .171 .324 .324

0 0.0784 0 .9216

0 0 .3025 .6975

0 0 0 1

 and


.127 .081 .468 .324

0 0.0784 0 .9216

0 0 .3025 .6975

0 0 0 1



{{𝐴∼𝐶, 𝐵∼𝐶 }} {{𝐴∼𝐶 }} {{𝐵∼𝐶 }} ∅

{{𝐴∼𝐶 }} {{𝐴∼𝐶,𝐶∼𝐶 }} {{𝐴∼𝐶, 2𝐶∼𝐶 }} {{𝐵∼𝐶 }} {{𝐵∼𝐶,𝐶∼𝐶 }} {{𝐵∼𝐶, 2𝐶∼𝐶 }} ∅ {{𝐶∼𝐶 }} {{2𝐶∼𝐶 }}

Δ𝑐 Δ𝑐 Δ𝑐

0.01 0.18 0.81 0.01 0.18 0.81 0.01 0.18 0.81

{{𝐴∼𝐶, 𝐵∼𝐶 }} {{𝐴∼𝐶 }} {{𝐵∼𝐶 }} ∅

Δ𝑠 Δ𝐵 Δ𝐵 Δ𝑠 Δ𝐴 Δ𝐴 Δ𝑠 Δ𝐴 Δ𝐵 Δ

.25.75 .5.5

1 .04

.96

.2

.8

1

.1

.1

.4

.4

1

.8 .2.5 .5

Fig. 11. Distributions in one iteration of protocol (𝑒′ ∥ 𝑓 ′) (𝜏) in Example 5.1 (progressing bottom to top).

22 A. Buckley et al.

(capturing nondeterministic choice depicted in Figure 11), with the entries labeled top-down and

left-right by ∅, {{𝐵∼𝐶}}, {{𝐴∼𝐶}}, {{𝐴∼𝐶, 𝐵∼𝐶}}. Protocol iterations are then modeled with matrix

multiplications. Observe that to evaluate the probability of generating both 𝐴∼𝐶 and 𝐵∼𝐶 it is

irrelevant which of the two matrices is used. For example, the probability of producing {{𝐴∼𝐶, 𝐵∼𝐶}}
from ∅ after three iterations is 0.926988 and 0.999382 after seven. Furthermore, the expected number

of needed iterations is approximately 2.

5.2 Stochastic Matrices
In this section we give another representation of PBKAT semantics, with stochastic matrices.

For brevity, first assume a protocol expression 𝑒 ∈ Exp that contains conditionals together with

sequential and ordered composition, but nowhile loops and furthermore, has no parallel composition

that could lead to nondeterministic choice when executed. Then, since the set of network states is

finite and can thus be ordered, ⟦𝑒⟧ maps an input 𝑎 ∈ MBP to a unique distribution over outputs,

therefore ⟦𝑒⟧(𝑎) can be represented by a stochastic vector. This is equivalent to characterizing the

semantics of 𝑒 as a probability assignment ⟦𝑒⟧(𝑎) : MBP → [0, 1], such that∑𝑏∈MBP
⟦𝑒⟧(𝑎) (𝑏) = 1.

Hence, ⟦𝑒⟧ can be further represented by a square matrix B⟦𝑒⟧ ∈ [0, 1]MBP×MBP
indexed byMBP,

in which the stochastic vector corresponding to input 𝑎 appears as the 𝑎-th row. Concretely, the

matrix entry B⟦𝑒⟧𝑎𝑏 = ⟦𝑒⟧(𝑎) (𝑏) gives the probability that the execution of protocol 𝑒 produces

output 𝑏 ∈ MBP on input 𝑎 ∈ MBP. Representing PBKAT semantics with stochastic matrices

is useful for modeling the behaviors of protocol executions as Markov chains (i.e., probability

transition systems with state space MBP), ensuring that the sequential composition operator

behaves as expected. This makes them particularly suitable for the analysis of iterative behavior of

protocols, like the one analyzed in Example 5.1. The limiting behavior of finite state Markov chains

has been well studied in the literature (e.g., see [Privault 2018]), and for so-called absorbing Markov

chains the limit distribution can be computed exactly.

In what follows, we deduce the limiting behavior of the while loop ⟦𝑒 (𝛽)⟧ from the matrix

representation of ⟦𝑒⟧. We say that a state 𝑎 ∈ MBP is absorbing if it transitions to itself with

probability 1. For example, for 𝑒 +𝛽 1 and input 𝑎 that passes the guard
¯𝛽 (i.e., 𝑎 ∈ sat(¯𝛽)), 𝑎 is an

absorbing state. It can be shown that, when all input states can reach an absorbing state, the limit

distribution of the while loop is computable and equal to B⟦𝑒 (𝛽)⟧ = lim𝑛→∞ B⟦(𝑒 +𝛽 1) (𝑛)⟧.
We remark that, by the same methods, stochastic representation of a protocol containing nonde-

terministic choice must be represented by a set of stochastic matrices, as illustrated in Example 5.1.

The representation with sets of stochastic matrices contains equivalent information to the one

with convex sets, but it’s less precise as it contains much redundancy. For example, we need two

matrices even if only one input (matrix row) leads to nondeterminism. Thus, we lose information on

different inputs yielding different amounts of nondeterminism, while PBKAT’s semantics produces

a separate convex hull for each input. As multiplication of stochastic matrices represents sequential

composition, it is semantically equivalent to taking Minkowski sums and then a convex hull.

5.3 Case Studies
In this section we express in PBKAT language two quantum network protocols reported in the

literature: the repeater swap experiment realized by Pompili et al. [2021] and the simulation of a

repeater swap protocol with distillation in NetSquid [Coopmans et al. 2021].

Repeater swap protocol realized by Pompili et al. [2021]. The first demonstration of entanglement

swapping from Bell pairs stored on remote nodes was experimentally achieved by Pompili et al.

[2021]. The network consists of three nodes, 𝐴, 𝐵 and 𝐶 , connected as in our Figure 1. Each node

A Language for QuantifyingQuantum Network Behavior 23

has nitrogen vacancy center electronic spin as a communication qubit. In addition, the middle node

𝐶 employs a Carbon-13 nuclear spin as a memory qubit.

In what follows, we express their protocol in PBKAT language with real-life specifications. The

network can handle at most one each of the Bell pairs 𝐴∼𝐶, 𝐵∼𝐶 and 𝐴∼𝐵. First, the protocol needs
to distribute entanglement between neighboring nodes, connected by physical quantum channels,

to generate 𝐴∼𝐶 and 𝐵∼𝐶 . To this end, we combine creation and transmission into single basic

actions, which we specify as ∅ ⊲𝑝𝐴 {{𝐴∼𝐶}} and ∅ ⊲𝑝𝐵 {{𝐵∼𝐶}}. Node 𝐶 stores the qubit of whichever

link is generated first in the memory. Once entanglement is established on both links as described

above, the entanglement swapping is executed that consumes 𝐴∼𝐶 and 𝐵∼𝐶 to produce 𝐴∼𝐵.
In the reported experiment, Bell pairs 𝐴∼𝐶 and 𝐵∼𝐶 are established at the rates 9 Hz and 7 Hz,

and the average rate of the combined protocol is 1/(40 s). It uses a timeout of 450 attempts before

the sequence is restarted, as a balance between optimizing the entanglement generation rate and

quality of the stored state. We specify Pompili et al.’s repeater swap protocol as,((
(∅ ⊲𝑝𝐴 {{𝐴∼𝐶}} +𝛼 1) (450) ∥ (∅ ⊲𝑝𝐵 {{𝐵∼𝐶}} +𝛽 1) (450)

)
; sw⟨𝐴∼𝐵 @𝐶⟩𝑝𝐶

) (𝛾)
where (𝑒 +𝜅 1) (𝑛) stands for the 𝑛-th unrolling of the while loop 𝑒 (𝜅) , and guards 𝛼, 𝛽 and 𝛾 check for

the absence of 𝐴∼𝐶, 𝐵∼𝐶 and 𝐴∼𝐵, respectively. We deduced the success probabilities of quantum

actions from the statistics reported on the physical experiments: 𝑝𝐴 = 0.0036, 𝑝𝐵 = 0.0028 and

𝑝𝐶 = 0.0071, assuming that a round corresponds to 0.4 ms time window.

Repeater swap protocol with distillation of Coopmans et al. [2021]. To specify the repeater swap

protocol with distillation of Coopmans et al. [2021] on our network in Figure 1, we will combine

the running example protocols (a) and (b). We combine creation and transmission into single basic

actions, which we specify as ∅ ⊲𝑝𝐴 {{𝐴∼𝐶}} and ∅ ⊲𝑝𝐵 {{𝐵∼𝐶}} with success probabilities as in the

previous example. The goal is to distribute entanglement between end nodes 𝐴 and 𝐵, by swapping

Bell pairs 𝐴∼𝐶 and 𝐵∼𝐶 at node 𝐶 , as in (a). In this scenario, however, before performing the swap,

we improve the quality (also called fidelity) of entangled states 𝐴∼𝐶 and 𝐵∼𝐶 with a round of

distillation. (A practitioner writing a protocol knows what is the appropriate number of distillation

rounds required to improve state’s quality above the required threshold.) To this end we require a

network that is capable of handling at least one end-to-end Bell pair 𝐴∼𝐵, and two of each 𝐴∼𝐶
and 𝐵∼𝐶 . For distillation of 𝐴∼𝐶 , we repeatedly attempt to create two copies of 𝐴∼𝐶 , and then

distill them into a fresh 𝐴∼𝐶 . To ensure that the subprotocol indeed returns an improved 𝐴∼𝐶 , the
distill action is called only after two Bell pairs were successfully created, which we specify as,

𝑒
(𝛽)
𝑑

where 𝑒𝑑 =
(
(∅ ⊲𝑝𝐴 {{𝐴∼𝐶}}) ◦ (∅ ⊲𝑝𝐴 {{𝐴∼𝐶}})

) (𝛽2)
; di⟨𝐴∼𝐶⟩0.5

where guard 𝛽2 checks for the absence of two copies of 𝐴∼𝐶 , and 𝛽 checks for the absence of 𝐴∼𝐶 .
Analogously, an improved Bell state 𝐵∼𝐶 is generated by the protocol with two while loops,

𝑒′
𝑑
(𝛽 ′)

where 𝑒′
𝑑
=

(
(∅ ⊲𝑝𝐵 {{𝐵∼𝐶}}) ◦ (∅ ⊲𝑝𝐵 {{𝐵∼𝐶}})

) (𝛽 ′
2
)

; di⟨𝐵∼𝐶⟩0.5

where guards 𝛽 ′ and 𝛽 ′
2
tests for the absences of 𝐵∼𝐶 . Then, the repeater swap protocol with

distillation by Coopmans et al. [2021] is specified below as:(
𝑒
(𝛽)
𝑑

∥ 𝑒′
𝑑
(𝛽 ′)

)
; sw⟨𝐴∼𝐵 @𝐶⟩𝑝𝐶

6 Evaluation
In this section we evaluate the PBKAT reasoning capabilities using the examples presented earlier.

We also compare our tool with the state-of-the-art framework BellKAT. Our results are presented

in Table 1. We are primarily interested in success probabilities (probabilities of generating the

24 A. Buckley et al.

Table 1. Performance measurements for PBKAT and BellKAT tools using the examples from the earlier

sections. We report memory, execution time, and the size of the output 𝑂 = ⟦𝑝⟧(∅) (note, 𝑂 ∈ C(M(BP))
for PBKAT and 𝑂 ∈ P(M(BP)) for BellKAT). For PBKAT we also report the probability (or probability range)

of successful generation of the desired Bell pair. As BellKAT does not support conditionals it cannot express

many PBKAT protocols, we mark those with “–”.

PBKAT BellKAT

Protocol Goal Memory Time |𝑂 | 𝑝 (Goal) Memory Time |𝑂 | Goal?

§3(a) {{𝐴∼𝐵}} 6 MiB <1 s 2 27.2% 6 MiB <1 s 4 maybe

§3(a1) {{𝐴∼𝐵}} 6 MiB <1 s 1 27.2% – – –

Ex. 4.2 {{𝐴∼𝐵}} 6 MiB <1 s 2 10.7% – – –

Ex. 5.1(I), ◦ {{𝐴∼𝐶, 𝐵∼𝐶}} 6 MiB <1 s 1 32.4% 6 MiB <1 s 4 maybe

Ex. 5.1(I), ∥ {{𝐴∼𝐶, 𝐵∼𝐶}} 6 MiB <1 s 2 32.4% 6 MiB <1 s 4 maybe

Ex. 5.1(II), ◦ , 2 iter. {{𝐴∼𝐶, 𝐵∼𝐶}} 6 MiB <1 s 1 61.9% 7 MiB <1 s 9 maybe

Ex. 5.1(II), ∥ , 2 iter. {{𝐴∼𝐶, 𝐵∼𝐶}} 6 MiB <1 s 14 60.7–67.8% 7 MiB <1 s 9 maybe

Ex. 5.1(II), ◦ , 3 iter. {{𝐴∼𝐶, 𝐵∼𝐶}} 6 MiB <1 s 1 78.2% 8 MiB <1 s 16 maybe

Ex. 5.1(II), ∥ , 3 iter. {{𝐴∼𝐶, 𝐵∼𝐶}} 24 MiB 26 s 22 77.4–85.2% 8 MiB <1 s 16 maybe

Ex. 5.1(III), 1 iter. {{𝐴∼𝐶, 𝐵∼𝐶}} 6 MiB <1 s 2 32.4% – – –

Ex. 5.1(III), 2 iter. {{𝐴∼𝐶, 𝐵∼𝐶}} 6 MiB <1 s 2 76.6% – – –

Ex. 5.1(IV), 3 iter. {{𝐴∼𝐶, 𝐵∼𝐶}} 6 MiB <1 s 2 92.7% – – –

§5.3(sw) {{𝐴∼𝐵}} 736 MiB 6 s 1 0.41% – – –

§5.3(di), outer {{𝐴∼𝐵}} 2263 MiB 15 s 1 <0.01% – – –

§5.3(di), inner {{𝐴∼𝐵}} 1178 MiB 8 s 1 0.11% – – –

§5.3(di), mixed {{𝐴∼𝐵}} 8271 MiB 377 s 1 0.02% – – –

“Goal” multiset of Bell pairs) and amount of nondeterminism (reflected in the number of generators

|𝑂 | in the convex set produced by PBKAT). Additionally, we show memory usage and runtime. All

our experiments were carried out on a laptop with an Intel® Core™ i7-10850H CPU 2.70 GHz and

16 GiB of RAM, and had as an initial state the empty multiset ∅.

Basic examples and optimization. For the first three protocols of Table 1, we note that they require
negligible computational resources, and the conditional clean-up in protocol (a1) reduces the output

nondeterminism (|𝑂 |), keeping the success probability intact. Next, we showcase the use of the

PBKAT tool for protocol optimization in Example 5.1. Our tool does not perform optimizations

automatically, but supports an automated quantitative analysis of different protocol versions,

verifying that one has better entanglement generation rate than the others. In entries (I) and (II),

protocols differ in only two aspects: number of iterations and restrictions put on the scheduler by

using ordered (◦) vs. parallel composition (∥). Not surprisingly, additional iterations increase the
probability of success, while the use of ∥ adds more nondeterminism. What is notable is the added

flexibility of nondeterminism improving probability of success; e.g., compare ∥ vs ◦ for 3 iterations:

while the minimum probability is 1% lower, the maximum probability is 7% higher. The above

finding highlights the necessity of combining probability and non-determinism. Protocols (III) and

(IV) add conditionals to (I) and (II), in order to ensure that only those Bell pairs get created that are

still missing. Results show that such a change both improves the probability of success and reduces

nondeterminism. These examples reflect the PBKAT’s trade-off between more nondeterminism

and increased resource requirements, a common phenomenon in verification space.

A Language for QuantifyingQuantum Network Behavior 25

Comparison with BellKAT. The last three columns of Table 1 show the results of running BellKAT

on PBKAT protocols that only use syntax supported by BellKAT; in particular, all the protocols that

use conditionals are not expressible in BellKAT. Let us consider first, the 3-iteration ∥ protocol (II),

BellKAT is using much less computational resources compared to PBKAT, which is expected since

BellKAT does not have to track probabilities or compute convex hulls.

BellKAT’s limitation is the lack of probabilistic reasoning. All the actions that have non-trivial

success probability (neither 0 nor 1) are treated equally as nondeterministically failing ones. Thus,

when asked about successful generation of the “Goal” Bell paris, BellKAT can only say “maybe”.

Note that all the analysis that can be performed by BellKAT can also be performed by PBKAT by

simply assuming probability 0.5 for nondeterministically failing actions and collecting the multisets

of Bell pairs that have non-zero probability, albeit using more resources for tracking probabilities.

Case study and scalability. The final four rows of performance measurements in Table 1 deal with

the case study examples from Section 5.3. For the repeater swap protocol of Pompili et al. [2021],

PBKAT tool computes the probability of generating {{𝐴∼𝐵}} equal to ≈ 0.4%. The computation

requires memory in the order of hundreds of MiB and takes a few seconds to complete. In the long

version of the paper we manually validate the result using probability theory. For the repeater swap

protocol with distillation of Coopmans et al. [2021], we consider different variants based on the

number of loop iterations. In Section 5.3 we presented the protocol as having nested while loops:

the inner loop followed by distillation (exit conditions 𝛽2 and 𝛽 ′
2
) and the outer loop followed by a

swap (exit conditions 𝛽 and 𝛽 ′). The variants that we evaluated use different values for the number

𝑛𝑖 of inner and 𝑛𝑜 outer iterations, while keeping the total number of rounds before swap 𝑛𝑜 · (𝑛𝑖 +1)
equal to 450, which is consistent with the timeout in the repeater swap experiment. Specifically, for

the “inner” variant we choose 𝑛𝑖 = 449, 𝑛𝑜 = 1, for the “outer” variant we choose 𝑛𝑖 = 1, 𝑛𝑜 = 225,

and for the “mixed” variant we use a combination of the two 𝑛𝑖 = 49, 𝑛𝑜 = 9. As the last three

rows of Table 1 demonstrate, the inner variant results in higher probability of success (0.11%) than

outer and mixed (<0.01% and 0.02%, respectively). From the performance and scalability standpoint,

we see that PBKAT is able to compute the success probabilities within few minutes on a standard

laptop. We note that the current PBKAT implementation is a proof-of-concept, and no attempt has

been made in optimizing its performance.

7 Conclusion and Future Work
The realization of quantum networks will enable large-scale applications of quantum communi-

cation, but significant research and engineering efforts are still required for them to reach full

functionality. Our work provides a step in this direction, by enabling specification and reasoning

about quantum network protocols. The language we propose, PBKAT, can express entanglement

distribution protocols in a realistic way.We tackle the protocol complexity arising from the combina-

tion of probabilistic and nondeterministic behaviors, inherent to the way quantum networks operate,

with a rigorous semantics designed for quantitative analysis. PBKAT’s usefulness is showcased by

expressing and evaluating a number of real-world quantum network protocols.

Our work provides many new avenues for future work, including (i) the enhancement of PBKAT

to consider other features of quantum communication, and (ii) the generalization of PBKAT to

other domains. For (i), enhancements could be adding a notion of time-evolution to the semantics in

order to capture decoherence and extending PBKAT to handle quantum states other than Bell pairs,

such as single qubits or tripartite W and GHZ states [Dür et al. 2000]. For (ii), generalization can be

achieved by extracting a coequationally defined language model for PBKAT and applying them to

other systems exhibiting round behavior (e.g., bulk-synchronous parallel model [Valiant 1990] or

hardware design [Halbwachs et al. 1991]).

26 A. Buckley et al.

References
Amar Abane, Michael Cubeddu, Van Sy Mai, and Abdella Battou. 2024. Entanglement Routing in Quantum Networks: A

Comprehensive Survey. arXiv:2408.01234 https://arxiv.org/abs/2408.01234

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker.

2014. NetKAT: Semantic Foundations for Networks. SIGPLAN Notices 49, 1 (2014), 113–126. https://doi.org/10.1145/

2578855.2535862

John Stewart Bell. 1964. On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika 1, 3 (1964), 195–200. https:

//doi.org/10.1103/PhysicsPhysiqueFizika.1.195

Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. 2021. The Theory of Traces for Systems with Nondeterminism and

Probability. In Proceedings of the 34th ACM/IEEE Symposium on Logic in Computer Science. 1–14. https://doi.org/10.1109/

LICS.2019.8785673

Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. 2022. The Theory of Traces for Systems with Nondeterminism,

Probability, and Termination. Logical Methods in Computer Science 18 (2022), 1–66. Issue 2. https://doi.org/10.46298/lmcs-

18(2:21)2022

Hans Jürgen Briegel, Wolfgang Dür, Juan Ignacio Cirac, and Peter Zoller. 1998. Quantum Repeaters: The Role of Imperfect

Local Operations in Quantum Communication. Physical Review Letters 81, 26 (1998), 5932–5935. https://doi.org/10.1103/

PhysRevLett.81.5932

Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster. 2024. An Algebraic

Language for Specifying Quantum Networks. Proceedings of the ACM on Programmming Languages 8, PLDI (2024), 1–23.
https://doi.org/10.1145/3656430

Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron. 2021. An automated deductive

verification framework for circuit-building quantum programs. Lect. Notes Comput. Sci. 12648 (2021), 148–177. https:

//doi.org/10.1007/978-3-030-72019-3_6

Christophe Chareton, Sébastien Bardin, Dongho Lee, Benoît Valiron, Renaud Vilmart, and Zhaowei Xu. 2022. Formal

Methods for Quantum Programs: A Survey. arXiv:2109.06493

Tim Coopmans, Robert Knegjens, Axel Dahlberg, David Maier, Loek Nijsten, Julio de Oliveira Filho, Martijn Papendrecht,

Julian Rabbie, Filip Rozpędek, Matthew Skrzypczyk, Leon Wubben, Walter de Jong, Damian Podareanu, Ariana Torres-

Knoop, David Elkouss, and Stephanie Wehner. 2021. NetSquid, a NETwork Simulator for QUantum Information using

Discrete events. Communications Physics 4, 164 (2021), 1–15. https://doi.org/10.1038/s42005-021-00647-8

Axel Dahlberg and Stephanie Wehner. 2018. SimulaQron—a simulator for developing quantum internet software. Quantum
Science and Technology 4, 1 (sep 2018), 015001. https://doi.org/10.1088/2058-9565/aad56e

Stephen DiAdamo, Janis Nötzel, Benjamin Zanger, and Mehmet Mert Beşe. 2021. QuNetSim: A Software Framework for

Quantum Networks. IEEE Transactions on Quantum Engineering 2 (2021), 1–12. https://doi.org/10.1109/TQE.2021.3092395
C. Delle Donne, M. Iuliano, B. van der Vecht, G. M. Ferreira, H. Jirovská, T. J. W. van der Steenhoven, A. Dahlberg, M.

Skrzypczyk, D. Fioretto, M. Teller, P. Filippov, A. R.-P. Montblanch, J. Fischer, H. B. van Ommen, N. Demetriou, D. Leichtle,

L. Music, H. Ollivier, I. te Raa, W. Kozlowski, T. H. Taminiau, P. Pawełczak, T. E. Northup, R. Hanson, and S. Wehner.

2025. An Operating System for Executing Applications on Quantum Network Nodes. Nature 639, 8054 (2025), 321–328.
https://doi.org/10.1038/s41586-025-08704-w

Wolfgang Dür, Guifre Vidal, and Juan Cirac. 2000. Three Qubits can be Entangled in Two Inequivalent Ways. Physical
Review A 62, 6 (2000), 1–12. https://doi.org/10.1103/PhysRevA.62.062314

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva. 2016. Probabilistic NetKAT. In

Proceedings of the 25th European Symposium on Programming Languages and Systems. 282–309. https://doi.org/10.1007/978-
3-662-49498-1_12

Laszlo Gyongyosi and Sandor Imre. 2022. Advances in the Quantum Internet. Commun. ACM 65, 8 (2022), 52–63. https:

//doi.org/10.1145/3524455

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The Synchronous Data Flow Programming

Language LUSTRE. Proc. IEEE 79, 9 (1991), 1305–1320. https://doi.org/10.1109/5.97300

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A verified optimizer for Quantum circuits.

Proc. ACM Program. Lang. 5, POPL, Article 37 (2021), 29 pages. https://doi.org/10.1145/3434318

Jessica Illiano, Marcello Caleffi, Antonio Manzalini, and Angela Sara Cacciapuoti. 2022. Quantum Internet Protocol Stack: A

Comprehensive Survey. Computer Networks 213, 109092 (2022), 1–26. https://doi.org/10.1016/j.comnet.2022.109092

Bart Jacobs. 2008. Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems. Electronic Notes in
Theoretical Computer Science 203, 5 (2008), 131–152. https://doi.org/10.1016/j.entcs.2008.05.023 Proceedings of the 9th

Workshop on Coalgebraic Methods in Computer Science.

Keith Kenemer. 2024. Error Correction in Quantum Networks. Aliro Technologies. https://www.aliroquantum.com/blog/an-

overview-of-quantan-overview-of-quantum-error-correction-in-entanglement-based-networksum-error-correction-

in-entanglement-based-networks

https://arxiv.org/abs/2408.01234
https://arxiv.org/abs/2408.01234
https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1109/LICS.2019.8785673
https://doi.org/10.1109/LICS.2019.8785673
https://doi.org/10.46298/lmcs-18(2:21)2022
https://doi.org/10.46298/lmcs-18(2:21)2022
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1145/3656430
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1007/978-3-030-72019-3_6
https://arxiv.org/abs/2109.06493
https://doi.org/10.1038/s42005-021-00647-8
https://doi.org/10.1088/2058-9565/aad56e
https://doi.org/10.1109/TQE.2021.3092395
https://doi.org/10.1038/s41586-025-08704-w
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/3524455
https://doi.org/10.1145/3524455
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/3434318
https://doi.org/10.1016/j.comnet.2022.109092
https://doi.org/10.1016/j.entcs.2008.05.023
https://www.aliroquantum.com/blog/an-overview-of-quantan-overview-of-quantum-error-correction-in-entanglement-based-networksum-error-correction-in-entanglement-based-networks
https://www.aliroquantum.com/blog/an-overview-of-quantan-overview-of-quantum-error-correction-in-entanglement-based-networksum-error-correction-in-entanglement-based-networks
https://www.aliroquantum.com/blog/an-overview-of-quantan-overview-of-quantum-error-correction-in-entanglement-based-networksum-error-correction-in-entanglement-based-networks

A Language for QuantifyingQuantum Network Behavior 27

C. M. Knaut, A. Suleymanzade, Y.-C. Wei, D. R. Assumpcao, P.-J. Stas, Y. Q. Huan, B. Machielse, E. N. Knall, M. Sutula,

G. Baranes, N. Sinclair, C. De-Eknamkul, D. S. Levonian, M. K. Bhaskar, H. Park, M. Lončar, and M. D. Lukin. 2024.

Entanglement of Nanophotonic Quantum Memory Nodes in a Telecom Network. Nature 629, 8012 (2024), 573–578.

https://doi.org/10.1038/s41586-024-07252-z

Wojciech Kozlowski and Stephanie Wehner. 2019. Towards Large-Scale Quantum Networks. In Proceedings of the 6th ACM
International Conference on Nanoscale Computing and Communication. 1–7. https://doi.org/10.1145/3345312.3345497

Wojciech Kozlowski, Stephanie Wehner, Rodney Van Meter, Bruno Rijsman, Angela Sara Cacciapuoti, Marcello Caleffi, and

Shota Nagayama. 2023. Architectural Principles for a Quantum Internet. RFC 9340 (https://www.rfc-editor.org/info/

rfc9340).

Marco Lewis, Sadegh Soudjani, and Paolo Zuliani. 2023. Formal Verification of Quantum Programs: Theory, Tools, and

Challenges. ACM Transactions on Quantum Computing 5, 1, Article 1 (2023), 35 pages. https://doi.org/10.1145/3624483

Yuan Li, Hao Zhang, Chen Zhang, Tao Huang, and F. Richard Yu. 2024. A Survey of Quantum Internet Protocols From a

Layered Perspective. IEEE Communications Surveys & Tutorials 26, 3 (2024), 1606–1634. https://doi.org/10.1109/COMST.

2024.3361662

Zhonghui Li, Kaiping Xue, Jian Li, Lutong Chen, Ruidong Li, Zhaoying Wang, Nenghai Yu, David S. L. Wei, Qibin Sun, and

Jun Lu. 2023. Entanglement-Assisted Quantum Networks: Mechanics, Enabling Technologies, Challenges, and Research

Directions. IEEE Communications Surveys & Tutorials 25, 4 (2023), 2133–2189. https://doi.org/10.1109/COMST.2023.

3294240

Jian-Long Liu, Xi-Yu Luo, Yong Yu, Chao-Yang Wang, Bin Wang, Yi Hu, Jun Li, Ming-Yang Zheng, Bo Yao, Zi Yan, Da Teng,

Jin-Wei Jiang, Xiao-Bing Liu, Xiu-Ping Xie, Jun Zhang, Qing-He Mao, Xiao Jiang, Qiang Zhang, Xiao-Hui Bao, and

Jian-Wei Pan. 2024. Creation of Memory–Memory Entanglement in a Metropolitan Quantum Network. Nature 629, 8012
(2024), 579–585. https://doi.org/10.1038/s41586-024-07308-0

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer Nature.
https://doi.org/10.1007/b138392

Matteo Mio, Ralph Sarkis, and Valeria Vignudelli. 2021. Combining Nondeterminism, Probability, and Termination:

Equational and Metric Reasoning. In Proceedings of the 36th ACM/IEEE Symposium on Logic in Computer Science. 1–14.
https://doi.org/10.1109/LICS52264.2021.9470717

Michael W. Mislove. 2006. On Combining Probability and Nondeterminism. Electronic Notes in Theoretical Computer Science
162 (2006), 261–265. https://doi.org/10.1016/j.entcs.2005.12.113 Proceedings of the Workshop "Essays on Algebraic

Process Calculi" (APC 25).

David Monniaux. 2000. Abstract Interpretation of Probabilistic Semantics. In Static Analysis, Jens Palsberg (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 322–339. https://doi.org/10.1007/978-3-540-45099-3_17

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Transactions on
Programming Languages and Systems 18, 3 (1996), 325–353. https://doi.org/10.1145/229542.229547

Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information. Cambridge University

Press. https://doi.org/10.1017/CBO9780511976667

Mihir Pant, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang, Prithwish Basu, Dirk Englund, and Saikat Guha. 2019.

Routing Entanglement in the Quantum Internet. npj Quantum Information 5, 25 (2019), 1–9.

S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L.

Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P.Wallden. 2020. Advances

in Quantum Cryptography. Advances in Optics and Photonics 12, 4 (2020), 1012–1236. https://doi.org/10.1364/AOP.361502
M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman,

L. dos Santos Martins, B. Dirkse, S. Wehner, and R. Hanson. 2021. Realization of a Multinode Quantum Network of

Remote Solid-State Qubits. Science 372, 6539 (2021), 259–264. https://doi.org/10.1126/science.abg1919

Cristian Prisacariu. 2010. Synchronous Kleene Algebra. The Journal of Logic and Algebraic Programming 79, 7 (2010),

608–635. https://doi.org/10.1016/j.jlap.2010.07.009

Nicolas Privault. 2018. Understanding Markov Chains. Springer Singapore. https://doi.org/10.1007/978-981-13-0659-4

Julian Rabbie, Kaushik Chakraborty, Guus Avis, and Stephanie Wehner. 2022. Designing Quantum Networks Using

Preexisting Infrastructure. npj Quantum Information 8, 5 (2022), 1–12. https://doi.org/10.1038/s41534-021-00501-3

Robert Rand and Steve Zdancewic. 2016. Models for Probabilistic Programs with an Adversary. Workshop on Probabilistic

Programming Semantics. http://pps2016.soic.indiana.edu/2015/12/16/adversaries

Wojciech Różowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and Alexandra Silva. 2023. Probabilistic Guarded KAT

Modulo Bisimilarity: Completeness and Complexity. In 50th International Colloquium on Automata, Languages, and
Programming (ICALP 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 261), Kousha Etessami, Uriel

Feige, and Gabriele Puppis (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 136:1–136:20.

https://doi.org/10.4230/LIPIcs.ICALP.2023.136

https://doi.org/10.1038/s41586-024-07252-z
https://doi.org/10.1145/3345312.3345497
https://www.rfc-editor.org/info/rfc9340
https://www.rfc-editor.org/info/rfc9340
https://doi.org/10.1145/3624483
https://doi.org/10.1109/COMST.2024.3361662
https://doi.org/10.1109/COMST.2024.3361662
https://doi.org/10.1109/COMST.2023.3294240
https://doi.org/10.1109/COMST.2023.3294240
https://doi.org/10.1038/s41586-024-07308-0
https://doi.org/10.1007/b138392
https://doi.org/10.1109/LICS52264.2021.9470717
https://doi.org/10.1016/j.entcs.2005.12.113
https://doi.org/10.1007/978-3-540-45099-3_17
https://doi.org/10.1145/229542.229547
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1016/j.jlap.2010.07.009
https://doi.org/10.1007/978-981-13-0659-4
https://doi.org/10.1038/s41534-021-00501-3
http://pps2016.soic.indiana.edu/2015/12/16/adversaries
https://doi.org/10.4230/LIPIcs.ICALP.2023.136

28 A. Buckley et al.

Ryosuke Satoh, Michal Hajdušek, Naphan Benchasattabuse, Shota Nagayama, Kentaro Teramoto, Takaaki Matsuo, Sara Ay-

man Metwalli, Takahiko Satoh, Shigeya Suzuki, and Rodney Van Meter. 2022. QuISP: a Quantum Internet Simula-

tion Package. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 354–365.
https://doi.org/10.1109/QCE53715.2022.00048

Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva. 2019a. Guarded Kleene Algebra

with Tests: Verification of Uninterpreted Programs in Nearly Linear Time. Proceedings of the ACM on Programming
Languages 4, POPL (2019), 1–28. https://doi.org/10.1145/3371129

Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter Kozen, and Alexandra Silva. 2019b. Scalable

Verification of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 190–203. https://doi.org/10.1145/3314221.3314639

Arian J. Stolk, Kian L. van der Enden, Marie-Christine Slater, Ingmar te Raa-Derckx, Pieter Botma, Joris van Rantwijk,

J. J. Benjamin Biemond, Ronald A. J. Hagen, Rodolf W. Herfst, Wouter D. Koek, Adrianus J. H. Meskers, René Vollmer,

Erwin J. van Zwet, Matthew Markham, Andrew M. Edmonds, J. Fabian Geus, Florian Elsen, Bernd Jungbluth, Constantin

Haefner, Christoph Tresp, Jürgen Stuhler, Stephan Ritter, and Ronald Hanson. 2024. Metropolitan-Scale Heralded

Entanglement of Solid-State Qubits. Science Advances 10, 44 (2024). https://doi.org/10.1126/sciadv.adp6442

Don Towsley. 2021. The Quantum Internet: Recent Advances and Challenges. Keynote at the 29th IEEE International
Conference on Network Protocols. https://icnp21.cs.ucr.edu

Dominique Unruh. 2019. Quantum Hoare Logic with Ghost Variables. In Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’19). IEEE Computer Society, Los Alamitos, CA, USA, Article 47, 13 pages.

https://doi.org/10.1109/LICS.2019.8785779 arXiv:1902.00325

Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun. ACM 33, 8 (1990), 103–111. https:

//doi.org/10.1145/79173.79181

Rodney Van Meter and Joe Touch. 2013. Designing Quantum Repeater Networks. IEEE Communications Magazine 51, 8
(2013), 64–71. https://doi.org/10.1109/MCOM.2013.6576340

Rodney Van Meter, Joe Touch, and Clare Horsman. 2011. Recursive Quantum Repeater Networks. Progress in Informatics 8
(2011), 65–79. https://doi.org/10.2201/NiiPi.2011.8.8

Daniele Varacca and Glynn Winskel. 2006. Distributing Probability over Non-Determinism. Mathematical Structures in
Computer Science 16, 1 (2006), 87–113. https://doi.org/10.1017/S0960129505005074

Jana Wagemaker, Marcello Bonsangue, Tobias Kappé, Jurriaan Rot, and Alexandra Silva. 2019. Completeness and Incom-

pleteness of Synchronous Kleene Algebra. In Proceedings of the 13th International Conference on Mathematics of Program
Construction. 385–413. https://doi.org/10.1007/978-3-030-33636-3_14

Chonggang Wang, Akbar Rahman, Ruidong Li, Melchior Aelmans, and Kaushik Chakraborty. 2023. Application Scenarios for
the Quantum Internet. Technical Report. Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-irtf-

qirg-quantum-internet-use-cases/16

Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018. Quantum Internet: A Vision for the Road Ahead. Science 362,
6412 (2018), 1–9. https://doi.org/10.1126/science.aam9288

Xiaoliang Wu, Alexander Kolar, Joaquin Chung, Dong Jin, Tian Zhong, Rajkumar Kettimuthu, and Martin Suchara. 2021.

SeQUeNCe: a customizable discrete-event simulator of quantum networks. Quantum Science and Technology 6, 4 (2021),

045027. https://doi.org/10.1088/2058-9565/ac22f6

Mingsheng Ying. 2012. Floyd–Hoare Logic for Quantum Programs. ACM Transactions on Programming Languages and
Systems 33, 6, Article 19 (January 2012), 19 pages. https://doi.org/10.1145/2049706.2049708

Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng Ying. 2023. CoqQ: Foundational Verification of

Quantum Programs. Proceedings of the ACM on Programming Languages 7, POPL, Article 29 (January 2023), 29 pages.

https://doi.org/10.1145/3571222 arXiv:2207.11350

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An Applied Quantum Hoare Logic. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’19). Association for Computing

Machinery, New York, NY, USA, 1149–1162. https://doi.org/10.1145/3314221.3314584

Noam Zilberstein, Dexter Kozen, Alexandra Silva, and Joseph Tassarotti. 2024. A Demonic Outcome Logic for Randomized

Nondeterminism. arXiv:2410.22540 https://arxiv.org/pdf/2410.22540

https://doi.org/10.1109/QCE53715.2022.00048
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1126/sciadv.adp6442
https://icnp21.cs.ucr.edu
https://doi.org/10.1109/LICS.2019.8785779
https://arxiv.org/abs/1902.00325
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1109/MCOM.2013.6576340
https://doi.org/10.2201/NiiPi.2011.8.8
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1007/978-3-030-33636-3_14
https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/16
https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/16
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1088/2058-9565/ac22f6
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/3571222
https://arxiv.org/abs/2207.11350
https://doi.org/10.1145/3314221.3314584
https://arxiv.org/abs/2410.22540
https://arxiv.org/pdf/2410.22540

A Language for QuantifyingQuantum Network Behavior 29

A Soundness
This section outlines the proof of Theorems 4.1 and 4.2 stating that PBKAT semantics is correct. The

fact that 𝑒 ≡ 𝑓 implies ⟦𝑒⟧ = ⟦𝑓 ⟧ follows from the soundness of PBKAT rules (listed in Figure 10)

with respect to the abstract semantics (i.e., ⊢ 𝑒 ≡ 𝑓 ⇒ 𝐼 (𝑒) = 𝐼 (𝑓) proven in Lemma A.1), and the

observation that ⟦𝑒⟧(𝑎) is a set of subdistributions for any 𝑎 ∈ MBP (see Lemma A.2).

Lemma A.1. PBKAT rules are sound with respect to the abstract semantics. This means that the
implication ⊢ 𝑒 ≡ 𝑓 ⇒ 𝐼 (𝑒) = 𝐼 (𝑓) is valid.

Proof. We prove the soundness of three most interesting rules (as the other are proven analo-

gously or are trivial), by unfolding the definitions of PBKAT’s abstract language model in Section 4.2.

• Associativity of the conditional (𝑒 +𝛼 𝑓) +𝛽 𝑔 ≡ 𝑒 +𝛼∧𝛽 (𝑓 +𝛽 𝑔) holds as,

𝐼 ((𝑒 +𝛼 𝑓) +𝛽 𝑔) = 𝐼 (𝑒 +𝛼 𝑓) +sat(𝛽) 𝐼 (𝑔) = sat(𝛽) ⋄ 𝐼 (𝑒 +𝛼 𝑓) ∪ sat(¯𝛽) ⋄ 𝐼 (𝑔)
= sat(𝛽) ⋄ (sat(𝛼) ⋄ 𝐼 (𝑒) ∪ sat(𝛼) ⋄ 𝐼 (𝑓)) ∪ sat(¯𝛽) ⋄ 𝐼 (𝑔)
= sat(𝛽) ∩ sat(𝛼) ⋄ 𝐼 (𝑒) ∪ sat(𝛽) ∩ sat(𝛼) ⋄ 𝐼 (𝑓) ∪ sat(¯𝛽) ⋄ 𝐼 (𝑔)

𝐼 (𝑒 +𝛼∧𝛽 (𝑓 +𝛽 𝑔)) = 𝐼 (𝑒) +sat(𝛼∧𝛽) 𝐼 (𝑓 +𝛽 𝑔) = sat(𝛼 ∧ 𝛽) ⋄ 𝐼 (𝑒) ∪ sat(𝛼 ∧ 𝛽) ⋄ 𝐼 (𝑓 +𝛽 𝑔)
= sat(𝛼) ∩ sat(𝛽) ⋄ 𝐼 (𝑒) ∪ sat(𝛼) ∪ sat(¯𝛽) ⋄ 𝐼 (𝑓 +𝛽 𝑔)
= sat(𝛼) ∩ sat(𝛽) ⋄ 𝐼 (𝑒) ∪ sat(𝛼) ∪ sat(𝛽) ⋄ 𝐼 (𝑓) ∪ sat(¯𝛽) ⋄ 𝐼 (𝑔)

since (sat(𝛼) ∪ sat(¯𝛽)) ∩ sat(𝛽) = sat(𝛼) ∩ sat(𝛽) and (sat(𝛼) ∪ sat(¯𝛽)) ∩ sat(¯𝛽) = sat(¯𝛽).
• The property of the while loop (𝑒 +𝛼 1) (𝛽) ≡ (𝛼 ; 𝑒) (𝛽) follows from:

𝐼
(
(𝑒 +𝛼 1) (𝛽)

)
= 𝐼 (𝑒 +𝛼 1) (sat(𝛽)) = ∪𝑛≥0 (sat(𝛽) ⋄ 𝐼 (𝑒 +𝛼 1))𝑛 ⋄ sat(¯𝛽)
= ∪𝑛≥0 (sat(𝛽) ∩ sat(𝛼) ⋄ 𝐼 (𝑒))𝑛 ⋄ sat(¯𝛽)

𝐼
(
(𝛼 ; 𝑒) (𝛽)

)
= 𝐼 (𝛼 ; 𝑒) (sat(𝛽)) = ∪𝑛≥0 (sat(𝛽) ⋄ 𝐼 (𝛼 ; 𝑒))𝑛 ⋄ sat(¯𝛽)

where equality in row 2 holds as sat(𝛼) ∩ sat(𝛽) ∩ sat(𝛼) = ∅ = sat(𝛽) ∩ sat(𝛼) ∩ sat(¯𝛽).
• Synchrony property (ℎ ; 𝑒) ∥ (𝑘 ; 𝑓) ≡ (ℎ ∥ 𝑘) ; (𝑒 ∥ 𝑓) holds for single round protocols ℎ, 𝑘 :

𝐼 ((ℎ ; 𝑒) ∥ (𝑘 ; 𝑓)) = 𝐼 (ℎ ; 𝑒) ∥ 𝐼 (𝑘 ; 𝑓) = (𝐼 (ℎ) ⋄ 𝐼 (𝑒)) ∥ (𝐼 (𝑘) ⋄ 𝐼 (𝑓))
contains words (𝑆0 ∩ 𝑆 ′

0
) (Ω1 ∥ Ω′

1
) (𝑆1 ∩ 𝑆 ′

1
) . . . (Ω𝑛 ∥ Ω′

𝑛) (𝑆𝑛 ∩ 𝑆 ′𝑛)Ω′
𝑛+1

𝑆 ′𝑛+1
. . . Ω′

𝑛′𝑆
′
𝑛′ if

𝑆𝑖 ∩ 𝑆 ′𝑖 ≠ ∅ for all 0 ≤ 𝑖 ≤ 𝑛, which are composed from 𝑆0Ω1𝑆1 ∈ 𝐼 (ℎ), 𝑆 ′
0
Ω′

1
𝑆 ′

1
∈ 𝐼 (𝑘) and

𝑆1Ω2𝑆2 . . . ∈ 𝐼 (𝑒), 𝑆 ′
1
Ω′

2
𝑆 ′

2
. . . ∈ 𝐼 (𝑓). These words are the same as the words in:

𝐼 ((ℎ ∥ 𝑘) ; (𝑒 ∥ 𝑓)) = 𝐼 (ℎ ∥ 𝑘) ⋄ 𝐼 (𝑒 ∥ 𝑓) = (𝐼 (ℎ) ∥ 𝐼 (𝑘)) ⋄ (𝐼 (𝑒) ∥ 𝐼 (𝑓))
□

Lemma A.2. For a PBKAT expression 𝑒 , the elements in ⟦𝑒⟧ are Markov subkernels (in other words,
for an input multiset 𝑎 ∈ MBP, the elements in ⟦𝑒⟧(𝑎) are subdistributions). Specifically, for every
subdistribution 𝜇 ∈ ⟦𝑒 (𝛼)⟧(𝑎) and multiset 𝑎′ ∈ MBP, the probability 𝜇 (𝑎′) is a limit of some
increasing sequence 𝜇𝑛 (𝑎′) for 𝜇𝑛 ∈ ⟦(𝑒 +𝛼 1)𝑛 ; 𝛼⟧(𝑎).

Proof. The abstract semantics builds from an expression 𝑒 the language 𝐼 (𝑒), containing guarded
strings of sets of the form𝑤 = Ω0𝑆1Ω1 . . . 𝑆𝑛Ω𝑛 ∈ PMBP ; (PΠ ; PMBP)∗. The semantics of 𝑒 for

an input multiset 𝑎 ∈ MBP is defined in Section 4.2 as follows:

⟦𝑒⟧(𝑎) = ⟦𝐼 (𝑒)⟧ex (𝑎) = WMS (
∑︁

𝑤∈𝐼 (𝑒)
1·⟦𝑤⟧ex (𝑎)) = {

∑︁
𝑤∈𝐼 (𝑒)

𝛿 | 𝛿 ∈ ⟦𝑤⟧ex (𝑎) ≠ 0 }

30 A. Buckley et al.

The key observation that we need to prove for the lemma to hold, is that for any 𝑎 ∈ MBP, the

elements of ⟦𝑒⟧(𝑎) are indeed subdistributions.

First we check that elements of ⟦𝑤⟧ex (𝑎) are subdistributions. Atomic actions in every set 𝑆𝑖
that constitutes the string 𝑤 come from concurrent basic actions (which we explicitly calculate

in Section 4.3 using the rules PNet-Ord and PNet-Prl). The only atomic actions in 𝑆𝑖 that are

not mutually exclusive under execution are those that capture nondeterministic choice, which we

represent with distinct subdistributions in the convex set of possible outputs (cf. Example 4.2).

Next we check that

∑
𝑤∈𝐼 (𝑒) 𝛿 for 𝛿 ∈ ⟦𝑤⟧ex (𝑎) is also a subdistribution. This follows from the

determinancy property of 𝐼 (−) defined in Lemma 4.1. For example, {𝑆0Ω1𝑆1, 𝑆0Ω1𝑆
′
1
, 𝑆 ′

0
Ω′

1
𝑆 ′

1
} and

{𝑆0Ω1𝑆1, 𝑆
′
0
} satisfy the determinacy property where 𝑆0∩𝑆 ′0 = ∅ and 𝑆1∩𝑆 ′1 = ∅, while {𝑆0Ω1𝑆1, 𝑆0}

and {𝑆0Ω1𝑆1, 𝑆0Ω
′
1
𝑆 ′

1
} do not. Availing the inductive definition of the abstract semantics 𝐼 (−) in

Section 4.2, it suffices to check the determinancy property is preserved by the operators that are

interpreted as union, i.e., conditionals and while loops. The following language,

𝐼 (𝑒′ +𝛼 𝑒′′) = sat(𝛼) ⋄ 𝐼 (𝑒′) ∪ sat(𝛼) ⋄ 𝐼 (𝑒′′)
is indeed a disjoint union since sat(𝛼) ∩ sat(𝛼) = ∅. Similarly it holds,

𝐼 (𝑒 (𝛼)) =
⋃
𝑛≥0

(sat(𝛼) ⋄ 𝐼 (𝑒))𝑛 ⋄ sat(𝛼)

= {sat(𝛼)} ∪ sat(𝛼) ⋄ 𝐼 (𝑒) ⋄ sat(𝛼) ∪ sat(𝛼) ⋄ 𝐼 (𝑒) ⋄ sat(𝛼) ⋄ 𝐼 (𝑒) ⋄ sat(𝛼) ∪ · · ·
which also preserves the determinancy property.

□

B A Note on Probabilities and the Expected Number of Attempts until Success
In this section 𝑓 and 𝑔 denote actions that succeed with probabilities 𝑝 and 𝑞.

Lemma B.1. Assume that action 𝑓 succeeds with probability 𝑝 . The probability that the action
succeeds after 𝑛 rounds is 1 − (1 − 𝑝)𝑛 . The expected number of attempts until the first success is 1/𝑝 .

Proof. It is well known that the expectation of a geometric variable is 1/𝑝 , where 𝑝 is the

success factor for the variable, which follows from the sum:

∞∑︁
𝑘=1

𝑘𝑝 (1 − 𝑝)𝑘−1 = 1/𝑝

□

Lemma B.2. Assume that actions 𝑓 and 𝑔 succeed with probabilities 𝑝 and 𝑞 independently, and in
each round (i.e., attempt or trial) both actions are executed concurrently. The probability that both
actions succeed (for the first time) after 𝑘 rounds is:

𝑞(1 − 𝑞)𝑘−1 (1 − (1 − 𝑝)𝑘) + 𝑝 (1 − 𝑝)𝑘−1 (1 − (1 − 𝑞)𝑘) − 𝑝𝑞(1 − 𝑝)𝑘−1 (1 − 𝑞)𝑘−1

Proof. We need to consider all possibilities where one action succeeds at the 𝑘-th attempt and

the other action succeeds at the 𝑘-th attempt or earlier. □

Lemma B.3. Assume that actions 𝑓 and 𝑔 succeed with probabilities 𝑝 and 𝑞 independently, and in
each round both actions are executed concurrently. The probability that both actions succeed after 𝑛
rounds is:

1 − (1 − 𝑝)𝑛 − (1 − 𝑞)𝑛 + (1 − 𝑝)𝑛 (1 − 𝑞)𝑛 = (1 − (1 − 𝑝)𝑛) (1 − (1 − 𝑞)𝑛)

Proof. This follows from summing the probabilities in Lemma B.2 for 𝑘 ranging from 1 to 𝑛. □

A Language for QuantifyingQuantum Network Behavior 31

Lemma B.4. Assume that actions 𝑓 and 𝑔 succeed with probabilities 𝑝 and 𝑞 independently, and in
each round both actions are executed concurrently. The expected number of attempts until the first
success of both actions is:

1

𝑝
+ 1

𝑞
− 1

𝑝 + 𝑞 − 𝑝𝑞

Proof. We denote by 𝑟 (𝑘) the probability that both actions succeed for the first time after 𝑘

rounds, which we calculated in Lemma B.2. Then,

∑∞
𝑘=1

𝑘 𝑟 (𝑘) = 1

𝑝
+ 1

𝑞
− 1

𝑝+𝑞−𝑝𝑞 . □

Lemma B.5. Assume that an action 𝑓 succeeds with probability 𝑝 , and in each round 2 attempts are
executed concurrently. The probability of 2 successes after 𝑛 rounds is:

1 − (1 − 𝑝)2𝑛 − 2𝑛𝑝 (1 − 𝑝)2𝑛−1

Proof. This follows from subtracting from 1 the probabilities of zero and one successful attempts.

□

Lemma B.6. Let actions 𝑓 and 𝑔 succeed with probabilities 𝑝 and 𝑞.
• Assume that 𝑓 and 𝑔 are independent, and that the action 𝑓 is called until it succeeds, followed
by the action 𝑔 being called until it succeeds. The expected number of attempts required for
both actions to succeed is 1/𝑝 + 1/𝑞.

• Assume that the action 𝑓 is called until it succeeds followed by the action 𝑔 called once; and
this is repeated until also 𝑔 succeeds. The expected number of attempts required for both actions
to succeed is 1/𝑝 × 1/𝑞.

Proof. Define independent random variables 𝑋 and 𝑌 to be the number of attempts to the first

success of 𝑓 and 𝑔, respectively. Since the expectation of a sum of random variables is the sum of

their expectations, it holds E(𝑋 + 𝑌) = E(𝑋) + E(𝑌), and similarly E(𝑋𝑌) = E(𝑋) E(𝑌). □

The stochastic matrix capturing the limiting behavior of the while loop ⟦𝑒 (𝛽)⟧ in Section 5.2.

Lemma B.7. After reordering the states so that absorbing states appear in the first block of the

matrix B⟦𝑒⟧ =

[
𝐸11 𝐸12

𝐸21 𝐸22

]
, the 𝑛-th unrolling of the while loop 𝑒 (𝛽) is represented by the matrix:

B⟦(𝑒 +𝛽 1) (𝑛)⟧ =

[
𝐼 0

𝐴 𝐸𝑛
22

]
for 𝐴 = (𝐼 + 𝐸22 + · · · + 𝐸𝑛−1

22
)𝐸21

C Manual Validation of Probabilities for Protocols from Case-study in Section 5.3
Wemanually validate the results in Section 6 for case-studies using probability theory in Appendix B.

C.1 Repeater swap experiment realized by Pompili et al. [2021] in Section 5.3
To show that these probabilities indeed match the reported data we calculate the expectations of

required iterations using the lemmas in Appendix B: The expected creations of Bell pairs 𝐴∼𝐶
and 𝐵∼𝐶 occur after 1/𝑝𝐴 ≈ 280 and 1/𝑝𝐵 ≈ 360 attempts, thus the expected number of rounds

required for successful (concurrent) creation of both Bell pairs is 480 by Lemma B.4, which is in

line with the experimental timeout of 450 attempts reported in [Pompili et al. 2021]. In fact, the

probability of creating both 𝐴∼𝐶 and 𝐵∼𝐶 in 450 rounds is approximately 0.58 by Lemma B.3, that –

followed by one attempt of swapping with success probability 𝑝𝐴 ≈ 1/140 ≈ 0.0071 – yields the

probability of creating {{𝐴∼𝐵}} to be 0.004, which perfectly matches the result computed by our

tool in Table 1 (cf. row corresponding to (sw) protocol). Furthermore, since the expected number of

required swapping attempts is 1/𝑝𝐶 ≈ 140, the expected time for 𝐴∼𝐵 creation – assuming time

32 A. Buckley et al.

window 0.4 ms for each round – is 1/0.58 × 450 × 140 × 0.0004 s ≈ 40 s (cf. Lemma B.6), as reported

by Pompili et al. [2021].

C.2 Repeater swap protocol with distillation of Coopmans et al. [2021] in Section 5.3
To compare the two protocols in Section 5.3, we specify the repeater swap protocol with distillation

using the same actions and iteration numbers as in the repeater swap experiment. For simplicity

we assume that distillation succeeds with the maximum possible probability 𝑝𝑑 = 1/2 (recall

that distillation is inherently probabilistic, see Section 2). Next we adjust the specification of the

repeater swap protocol with distillation in Section 5.3, by replacing the nested while loops with

fixed numbers 𝑛𝑖 and 𝑛𝑜 of guarded iterations:

𝑒𝑑 =
(
(∅ ⊲𝑝𝐴 {{𝐴∼𝐶}}) ◦ (∅ ⊲𝑝𝐴 {{𝐴∼𝐶}}) +𝛽2

1

) (𝑛𝑖)
; (di⟨𝐴∼𝐶⟩𝑝𝑑 + ¯𝛽2

drop⟨𝐴∼𝐶⟩)

𝑒′
𝑑
=

(
(∅ ⊲𝑝𝐵 {{𝐵∼𝐶}}) ◦ (∅ ⊲𝑝𝐵 {{𝐵∼𝐶}}) +𝛽 ′

2

1

) (𝑛𝑖)
; (di⟨𝐵∼𝐶⟩𝑝𝑑 + ¯𝛽 ′

2

drop⟨𝐵∼𝐶⟩)

Then the repeater swap protocol with 𝑛𝑜 distillation attempts is specified below as:((
𝑒𝑑 +𝛽 1

) (𝑛𝑜) ∥
(
𝑒′
𝑑
+𝛽 ′ 1

) (𝑛𝑜))
; sw⟨𝐴∼𝐵 @𝐶⟩𝑝𝐶

In Section 6 we evaluated three variants of the protocol for different 𝑛𝑖 and 𝑛𝑜 (“inner” variant

𝑛𝑖 = 449, 𝑛𝑜 = 1, “outer” variant 𝑛𝑖 = 1, 𝑛𝑜 = 225, and “mixed” variant 𝑛𝑖 = 49, 𝑛𝑜 = 9), computed

by our tool (cf. the rows corresponding to (di) protocol in Table 1).

We apply Lemma B.5 to calculate that after 449 rounds the probabilities of creating {{𝐴∼𝐶,𝐴∼𝐶}}
and {{𝐵∼𝐶, 𝐵∼𝐶}} are 0.8335 and 0.7161, respectively, which followed by a distillation attempt (with

ideal 𝑝𝑑 = 1/2) yield 0.4168 and 0.358 probability of success for each subprotocol 𝑒𝑑 and 𝑒′
𝑑
. Then,

after performing the swapping at 𝐶 , the probability of creating end-to-end 𝐴∼𝐵 is 0.4168 × 0.358 ×
0.0071 in the order of 0.1%. We thus expect the protocol to succeed after 1/0.001 × 449 × 0.0004

seconds which is ≈ 3 minutes (cf. Lemma B.6).

Similarly, by Lemma B.5 the probabilities of creating {{𝐴∼𝐶,𝐴∼𝐶}} and {{𝐵∼𝐶, 𝐵∼𝐶}} after 49
inner rounds are 0.0491 and 0.0312, and after distillation, 𝑒𝑑 and 𝑒′

𝑑
succeed with probabilities 0.0245

and 0.0156, respectively. After 9 concurrent iterations of 𝑒𝑑 and 𝑒′
𝑑
we succeed with probability

0.2004 × 0.1320 by Lemma B.3, which after performing the swap yields 0.0002 success probability.

We therefore expect the protocol to succeed after 1/0.0002×49×9×0.0004 seconds or ≈ 15 minutes.

It turns out that the strategy of 𝑛𝑖 = 1 and 𝑛𝑜 = 225 is the least efficient since the probability of

generating end-to-end 𝐴∼𝐵 is 5 × 10
−6
, which would require two months.

D Outputs
D.1 Protocol (a)

Output.

L{{}} × 6901

25000

+ {{𝐴∼𝐵}} × 1701

6250

+ {{𝐴∼𝐶}} × 423

1250

+ {{𝐵∼𝐶}} × 567

5000

,

{{}} × 7351

25000

+ {{𝐴∼𝐵}} × 1701

6250

+ {{𝐴∼𝐶}} × 243

1250

+ {{𝐵∼𝐶}} × 1197

5000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

2 [1701

6250
, 1701

6250
] 6 0.002

A Language for QuantifyingQuantum Network Behavior 33

BellKAT Output.

{{{}},
{{𝐴∼𝐵}},
{{𝐴∼𝐶}},
{{𝐵∼𝐶}}}

BellKAT Stats.

Num Generators Success probability Memory (MiB) Time(s)

4 6 0.002

D.2 Protocol (a1)
Output.

L{{}} × 4549

6250

+ {{𝐴∼𝐵}} × 1701

6250

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

1 [1701

6250
, 1701

6250
] 6 0.002

D.3 Protocol (a2)
Output.

L{{}} × 163

675

+ {{𝐴∼𝐵}} × 8

75

+ {{𝐴∼𝐶}} × 8

15

+ {{𝐵∼𝐶}} × 2

45

+ {{𝐶∼𝐶}} × 2

27

,

{{}} × 253

675

+ {{𝐴∼𝐵}} × 8

75

+ {{𝐴∼𝐶}} × 8

45

+ {{𝐵∼𝐶}} × 4

15

+ {{𝐶∼𝐶}} × 2

27

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

2 [8

75
, 8

75
] 6 0.002

D.4 Protocol 5.1.I (parallel)
Output.

L{{}} × 127

1000

+ {{𝐴∼𝐶}} × 117

250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 81

250

+ {{𝐵∼𝐶}} × 81

1000

,

{{}} × 181

1000

+ {{𝐴∼𝐶}} × 81

250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 81

250

+ {{𝐵∼𝐶}} × 171

1000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

2 [81

250
, 81

250
] 6 0.002

BellKAT Output.

{{{}},
{{𝐴∼𝐶}},

{{𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐵∼𝐶}}}

34 A. Buckley et al.

BellKAT Stats.

Num Generators Success probability Memory (MiB) Time(s)

4 6 0.004

D.5 Protocol 5.1.I (ordered)
Output.

L{{}} × 127

1000

+ {{𝐴∼𝐶}} × 117

250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 81

250

+ {{𝐵∼𝐶}} × 81

1000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

1 [81

250
, 81

250
] 6 0.001

BellKAT Output.

{{{}},
{{𝐴∼𝐶}},

{{𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐵∼𝐶}}}

BellKAT Stats.

Num Generators Success probability Memory (MiB) Time(s)

4 6 0.004

A Language for QuantifyingQuantum Network Behavior 35

D.6 Protocol 5.1.II (parallel, two iterations)
Output.

L{{}} × 16129

1000000

+ {{𝐴∼𝐶}} × 9243

31250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 40581

62500

+ {{𝐵∼𝐶}} × 38799

1000000

,

{{}} × 16129

1000000

+ {{𝐴∼𝐶}} × 9243

31250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 4131

6250

+ {{𝐵∼𝐶}} × 5427

200000

,

{{}} × 16129

1000000

+ {{𝐴∼𝐶}} × 42237

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 75897

125000

+ {{𝐵∼𝐶}} × 38799

1000000

,

{{}} × 16129

1000000

+ {{𝐴∼𝐶}} × 42237

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 15471

25000

+ {{𝐵∼𝐶}} × 5427

200000

,

{{}} × 22987

1000000

+ {{𝐴∼𝐶}} × 31041

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 81729

125000

+ {{𝐵∼𝐶}} × 74853

1000000

,

{{}} × 22987

1000000

+ {{𝐴∼𝐶}} × 31041

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 84807

125000

+ {{𝐵∼𝐶}} × 50229

1000000

,

{{}} × 22987

1000000

+ {{𝐴∼𝐶}} × 17343

62500

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 19521

31250

+ {{𝐵∼𝐶}} × 74853

1000000

,

{{}} × 22987

1000000

+ {{𝐴∼𝐶}} × 17343

62500

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 4131

6250

+ {{𝐵∼𝐶}} × 7713

200000

,

{{}} × 22987

1000000

+ {{𝐴∼𝐶}} × 39951

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 75897

125000

+ {{𝐵∼𝐶}} × 50229

1000000

,

{{}} × 22987

1000000

+ {{𝐴∼𝐶}} × 39951

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 15471

25000

+ {{𝐵∼𝐶}} × 7713

200000

,

{{}} × 32761

1000000

+ {{𝐴∼𝐶}} × 27783

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 81729

125000

+ {{𝐵∼𝐶}} × 91143

1000000

,

{{}} × 32761

1000000

+ {{𝐴∼𝐶}} × 27783

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 84807

125000

+ {{𝐵∼𝐶}} × 66519

1000000

,

{{}} × 32761

1000000

+ {{𝐴∼𝐶}} × 7857

31250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 19521

31250

+ {{𝐵∼𝐶}} × 91143

1000000

,

{{}} × 32761

1000000

+ {{𝐴∼𝐶}} × 7857

31250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 40581

62500

+ {{𝐵∼𝐶}} × 66519

1000000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

14 [75897

125000
, 84807

125000
] 6 0.027

BellKAT Output.

{{{}},
{{𝐴∼𝐶}},

{{𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐵∼𝐶}},

{{𝐵∼𝐶, 𝐵∼𝐶}}}

BellKAT Stats.

Num Generators Success probability Memory (MiB) Time(s)

9 7 0.008

36 A. Buckley et al.

D.7 Protocol 5.1.II (parallel, three iterations)
Output.

L{{}} × 2048383

1000000000

+ {{𝐴∼𝐶}} × 39228813

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 206518167

250000000

+ {{𝐵∼𝐶}} × 14963697

1000000000

,

{{}} × 2048383

1000000000

+ {{𝐴∼𝐶}} × 39228813

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 208521459

250000000

+ {{𝐵∼𝐶}} × 6950529

1000000000

,

{{}} × 2048383

1000000000

+ {{𝐴∼𝐶}} × 52149123

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 193597857

250000000

+ {{𝐵∼𝐶}} × 14963697

1000000000

,

{{}} × 2048383

1000000000

+ {{𝐴∼𝐶}} × 52149123

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 195601149

250000000

+ {{𝐵∼𝐶}} × 6950529

1000000000

,

{{}} × 2919349

1000000000

+ {{𝐴∼𝐶}} × 34040889

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 208176723

250000000

+ {{𝐵∼𝐶}} × 28210203

1000000000

,

{{}} × 2919349

1000000000

+ {{𝐴∼𝐶}} × 34040889

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 212151879

250000000

+ {{𝐵∼𝐶}} × 12309579

1000000000

,

{{}} × 2919349

1000000000

+ {{𝐴∼𝐶}} × 38648169

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 208521459

250000000

+ {{𝐵∼𝐶}} × 8402139

1000000000

,

{{}} × 2919349

1000000000

+ {{𝐴∼𝐶}} × 43965819

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 198251793

250000000

+ {{𝐵∼𝐶}} × 28210203

1000000000

,

{{}} × 2919349

1000000000

+ {{𝐴∼𝐶}} × 50231169

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 38830671

50000000

+ {{𝐵∼𝐶}} × 3908511

200000000

,

{{}} × 2919349

1000000000

+ {{𝐴∼𝐶}} × 51568479

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 193597857

250000000

+ {{𝐵∼𝐶}} × 16415307

1000000000

,

{{}} × 2919349

1000000000

+ {{𝐴∼𝐶}} × 51568479

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 195601149

250000000

+ {{𝐵∼𝐶}} × 8402139

1000000000

,

{{}} × 4160647

1000000000

+ {{𝐴∼𝐶}} × 31893867

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 208381977

250000000

+ {{𝐵∼𝐶}} × 34735977

1000000000

,

{{}} × 4160647

1000000000

+ {{𝐴∼𝐶}} × 31893867

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 212943573

250000000

+ {{𝐵∼𝐶}} × 16489593

1000000000

,

{{}} × 4160647

1000000000

+ {{𝐴∼𝐶}} × 33213357

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 212151879

250000000

+ {{𝐵∼𝐶}} × 14378409

1000000000

,

{{}} × 4160647

1000000000

+ {{𝐴∼𝐶}} × 36894807

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 209076957

250000000

+ {{𝐵∼𝐶}} × 11952297

1000000000

,

{{}} × 4160647

1000000000

+ {{𝐴∼𝐶}} × 41232357

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 199043487

250000000

+ {{𝐵∼𝐶}} × 34735977

1000000000

,

{{}} × 4160647

1000000000

+ {{𝐴∼𝐶}} × 49403637

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 38830671

50000000

+ {{𝐵∼𝐶}} × 4322277

200000000

,

{{}} × 4160647

1000000000

+ {{𝐴∼𝐶}} × 49403637

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 196568127

250000000

+ {{𝐵∼𝐶}} × 11952297

1000000000

,

{{}} × 5929741

1000000000

+ {{𝐴∼𝐶}} × 30714471

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 208381977

250000000

+ {{𝐵∼𝐶}} × 37684467

1000000000

,

{{}} × 5929741

1000000000

+ {{𝐴∼𝐶}} × 30714471

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 212943573

250000000

+ {{𝐵∼𝐶}} × 19438083

1000000000

,

{{}} × 5929741

1000000000

+ {{𝐴∼𝐶}} × 40052961

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 199043487

250000000

+ {{𝐵∼𝐶}} × 37684467

1000000000

,

{{}} × 5929741

1000000000

+ {{𝐴∼𝐶}} × 40052961

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 203605083

250000000

+ {{𝐵∼𝐶}} × 19438083

1000000000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

22 [193597857

250000000
, 212943573

250000000
] 24 26.152

A Language for QuantifyingQuantum Network Behavior 37

BellKAT Output.

{{{}},
{{𝐴∼𝐶}},

{{𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶,𝐴∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐵∼𝐶}},

{{𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐵∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}}}

BellKAT Stats.

Num Generators Success probability Memory (MiB) Time(s)

16 8 0.015

D.8 Protocol 5.1.II (ordered, two iterations)
Output.

L{{}} × 16129

1000000

+ {{𝐴∼𝐶}} × 42237

125000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 15471

25000

+ {{𝐵∼𝐶}} × 5427

200000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

1 [15471

25000
, 15471

25000
] 6 0.002

BellKAT Output.

{{{}},
{{𝐴∼𝐶}},

{{𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐵∼𝐶}},

{{𝐵∼𝐶, 𝐵∼𝐶}}}

BellKAT Stats.

38 A. Buckley et al.

Num Generators Success probability Memory (MiB) Time(s)

9 7 0.008

D.9 Protocol 5.1.II (ordered, three iterations)
Output.

L{{}} × 2048383

1000000000

+ {{𝐴∼𝐶}} × 52149123

250000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 195601149

250000000

+ {{𝐵∼𝐶}} × 6950529

1000000000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

1 [195601149

250000000
, 195601149

250000000
] 6 0.003

BellKAT Output.

{{{}},
{{𝐴∼𝐶}},

{{𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶,𝐴∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶}},
{{𝐴∼𝐶,𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},

{{𝐴∼𝐶,𝐴∼𝐶,𝐴∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐵∼𝐶}},

{{𝐵∼𝐶, 𝐵∼𝐶}},
{{𝐵∼𝐶, 𝐵∼𝐶, 𝐵∼𝐶}}}

BellKAT Stats.

Num Generators Success probability Memory (MiB) Time(s)

16 8 0.016

D.10 Protocol 5.1.III (one iteration)
Output.

L{{}} × 127

1000

+ {{𝐴∼𝐶}} × 117

250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 81

250

+ {{𝐵∼𝐶}} × 81

1000

,

{{}} × 181

1000

+ {{𝐴∼𝐶}} × 81

250

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 81

250

+ {{𝐵∼𝐶}} × 171

1000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

2 [81

250
, 81

250
] 6 0.002

A Language for QuantifyingQuantum Network Behavior 39

D.11 Protocol 5.1.III (two iterations)
Output.

L{{}} × 16129

1000000

+ {{𝐴∼𝐶}} × 100503

500000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 1915569

2500000

+ {{𝐵∼𝐶}} × 83187

5000000

,

{{}} × 32761

1000000

+ {{𝐴∼𝐶}} × 78327

500000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 1915569

2500000

+ {{𝐵∼𝐶}} × 221787

5000000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

2 [1915569

2500000
, 1915569

2500000
] 6 0.004

D.12 Protocol 5.1.IV (three iterations)
Output.

L{{}} × 2048383

1000000000

+ {{𝐴∼𝐶}} × 68352687

1000000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 23174702721

25000000000

+ {{𝐵∼𝐶}} × 65270529

25000000000

,

{{}} × 5929741

1000000000

+ {{𝐴∼𝐶}} × 58002399

1000000000

+ {{𝐴∼𝐶, 𝐵∼𝐶}} × 23174702721

25000000000

+ {{𝐵∼𝐶}} × 226993779

25000000000

M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

2 [23174702721

25000000000
, 23174702721

25000000000
] 6 0.007

D.13 Protocol 5.3 (Pompili)
Output.

L{{}} × 0.6271846044 + {{𝐴∼𝐵}} × 0.0040853247 + {{𝐴∼𝐶}} × 0.2272810780 + {{𝐵∼𝐶}} × 0.1414489929M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

1 [0.0040853247, 0.0040853247] 736 6.828

D.14 Protocol 5.3 (Coopmans, outer)
Output.

L{{}} × 0.9976640046 + {{𝐴∼𝐵}} × 0.0000000091 + {{𝐴∼𝐶}} × 0.0014556579 + {{𝐵∼𝐶}} × 0.0008803284M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

1 [0.0000000091, 0.0000000091] 2263 14.885

D.15 Protocol 5.3 (Coopmans, inner)
Output.

L{{}} × 0.5225711584 + {{𝐴∼𝐵}} × 0.0010594623 + {{𝐴∼𝐶}} × 0.2675510822 + {{𝐵∼𝐶}} × 0.2088182972M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

1 [0.0010594623, 0.0010594623] 1178 7.516

40 A. Buckley et al.

D.16 Protocol 5.3 (Coopmans, mixed)
Output.

L{{}} × 0.7203643533 + {{𝐴∼𝐵}} × 0.0001877432 + {{𝐴∼𝐶}} × 0.1739095845 + {{𝐵∼𝐶}} × 0.1055383191M

Stats.

Num Generators Success probability Memory (MiB) Time(s)

1 [0.0001877432, 0.0001877432] 8271 376.528

E Examples
PBKAT’s semantics faithfully captures the difference, between 𝑒 ∥ 𝑓 and 𝑒 ◦ 𝑓 in Example 5.1, as

illustrated in Figure 12.

∅ Δ1

0.81

{{𝐶∼𝐶,𝐶∼𝐶 }}

0.18 {{𝐶∼𝐶 }}

0.01

∅

Δ2

Δ′
2

Δ

Δ𝑠

{{𝐴∼𝐶, 𝐵∼𝐶 }}

{{𝐴∼𝐶 }}

{{𝐵∼𝐶 }}

∅

0.4

0.4

0.1

0.1 0.8

0.2

0.5

0.5

1

∅ Δ1

0.81

{{𝐶∼𝐶,𝐶∼𝐶 }}

0.18 {{𝐶∼𝐶 }}

0.01

∅

Δ2

Δ

Δ𝑠

{{𝐴∼𝐶, 𝐵∼𝐶 }}

{{𝐴∼𝐶 }}

{{𝐵∼𝐶 }}

∅

0.4

0.4

0.1

0.1
0.8

0.2

1

Fig. 12. Execution traces (progressing left to right) of protocols 𝑒 ∥ 𝑓 and 𝑒 ◦ 𝑓 in Example 5.1. The choices

between tr⟨𝐶→𝐴∼𝐶⟩0.8 or tr⟨𝐶→𝐵∼𝐶⟩0.5 are shown as brown or cyan branches, respectively.

Received 01 January 20XX

	Abstract
	1 Introduction
	2 Background and Related Work
	3 PBKAT Overview
	4 PBKAT Language
	4.1 Syntax
	4.2 Semantics
	4.3 Properties

	5 Quantitative Analysis
	5.1 Protocol Optimization
	5.2 Stochastic Matrices
	5.3 Case Studies

	6 Evaluation
	7 Conclusion and Future Work
	References
	A Soundness
	B A Note on Probabilities and the Expected Number of Attempts until Success
	C Manual Validation of Probabilities for Protocols from Case-study in Section 5.3
	C.1 Repeater swap experiment realized by delft3node in Section 5.3
	C.2 Repeater swap protocol with distillation of NetSquid in Section 5.3

	D Outputs
	D.1 Protocol (a)
	D.2 Protocol (a1)
	D.3 Protocol (a2)
	D.4 Protocol 5.1.I (parallel)
	D.5 Protocol 5.1.I (ordered)
	D.6 Protocol 5.1.II (parallel, two iterations)
	D.7 Protocol 5.1.II (parallel, three iterations)
	D.8 Protocol 5.1.II (ordered, two iterations)
	D.9 Protocol 5.1.II (ordered, three iterations)
	D.10 Protocol 5.1.III (one iteration)
	D.11 Protocol 5.1.III (two iterations)
	D.12 Protocol 5.1.IV (three iterations)
	D.13 Protocol 5.3 (Pompili)
	D.14 Protocol 5.3 (Coopmans, outer)
	D.15 Protocol 5.3 (Coopmans, inner)
	D.16 Protocol 5.3 (Coopmans, mixed)

	E Examples

